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a b s t r a c t

This article compares the effectiveness and robustness of nine typical control charts for monitoring the

mean of a variable, including the most effective optimal and adaptive Sequential Probability Ratio Test

(SPRT) charts. The nine charts are categorized into three types (the X̄ type, CUSUM type and SPRT type)

and three versions (the basic version, optimal version and fully adaptive (FA) version). While the

charting parameters of the basic charts are determined by common wisdoms, the parameters of the

optimal and fully adaptive charts are designed optimally in order to minimize an index, Average Extra

Quadratic Loss (AEQL), for the best overall performance. A Performance Comparison Index, PCI, is also

proposed as the measure of the relative overall performance of the charts. This comparison study does

not only compare the detection effectiveness of the charts, but also investigate their robustness in

performance. Moreover, the probability distribution of the mean shift d is studied explicitly as an

influential factor in a factorial experiment. Apart from many other findings, the results of this study

reveal that the SPRT chart is more effective than the CUSUM chart and X chart by 58% and 126%,

respectively, from an overall viewpoint. Moreover, it is found that the optimization design of charting

parameters can increase the detection effectiveness by 29% on average, and the adaptive features can

further enhance the detection power by 35%. Finally, a set of design tables are provided to facilitate the

users to select a chart for their applications.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Since it was introduced as a Statistical Process Control (SPC)
tool to monitor processes and ensure quality, the control chart
has been increasingly adopted in modern industries and non-
manufacturing sectors. More and more new charts have been
developed over the decades and recently (Magalh~aes et al., 2009;
Costa and Machado, 2011; Zhou and Lian, 2011; Wu et al., 2011;
Celano et al., 2011). It is essential to have a systematic study that
evaluates and compares the performance of different charts in a
quantitative and analytical manner under various conditions, so
that the SPC users not only roughly know which charts are better
than the others, but are also aware of the degree of difference in
performance among the charts. This kind of information will
greatly facilitate the SPC users to select a suitable chart for their
applications. Usually, a user may not be interested to adopt a
complicated chart just for a performance improvement of 1–2%.
But if the achievable improvement resulting from an advanced
chart is more than, say 20%, he will be willing to make effort and

spend resources to adopt the advanced chart. In addition to chart
effectiveness (the detection speed), the users may also be con-
cerned with the robustness of the charts, that is, whether the
performance of a chart is stable under different conditions
compared with the leading charts. The probability distribution
of mean shift d will be different in different process. Its influence
on the chart performance should also be investigated carefully.

Some comparison studies of chart performance are available in
literature, including the comparisons of the multivariate EWMA
charts (Margavio and Conerly, 1995), the adaptive X, CUSUM charts
and a special SPRT chart (Stoumbos and Reynolds, 2001), the
economic control charts (Tannock, 1997), the Shewhart and CUSUM
charts for monitoring process of mean and variance (Reynolds and
Stoumbos, 2004a), the non-parametric charts for detecting defect
shifts (Das, 2009), the profile monitoring approaches (Colosimo and
Pacella, 2010), the GLR chart (Reynolds and Lou, 2010) and the
CUSUM charts for detecting mean shifts (Wu et al., 2009; Ryu et al.,
2010) or both mean and variance shifts (Wu et al., 2010).

However, few of the comparative studies have covered all
major types and versions of the control charts for monitoring
process mean. Specifically, seldom are the very effective SPRT
charts and adaptive charts included. Many of these studies are
conducted in a qualitative or descriptive manner. Such qualitative
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approaches are unable to tell the degree of the superiority of one
chart over another or to rank the charts’ performance properly
when several charts are involved in the comparison. Moreover,
almost none of these comparisons has either considered the
robustness of chart performance or the probability distributions
of the mean shift d. In most of the studies, the charting para-
meters have not been optimized, that is, a chart used for
comparison may not be the best one of its type and version.

This article studies the overall performance of nine typical
control charts for monitoring process mean in a quantitative and
analytical manner. It includes the X type, CUSUM type and SPRT
type charts, and three versions (the basic version, optimal version
and fully adaptive or FA version) for each type. While the basic
and optimal charts use fixed sample size and sampling interval
(FSSI), the FA charts vary the sample sizes n and sampling
intervals d according to the observed data from the process. The
FA chart is the most effective adaptive chart as it adapts both n

and d. In this study, while the FA versions of the X and CUSUM
charts adopt the Variable Sample Sizes and Sampling Intervals
(VSSI) model, the FA SPRT chart will use the Variable Sampling
Intervals (VSI) model, because the SPRT chart has incorporated
adaptive sample size feature intrinsically.

The optimal and FA charts will be designed by an optimization
procedure in which the objective function to be minimized is the
Average Extra Quadratic Loss (AEQL). The index AEQL is actually a
weighted average Average Time to Signal (ATS) and works as a
measure of the overall performance of the charts. In addition to
detection effectiveness, the performance robustness or stability will
also be investigated. A factorial experiment will use a quantitative
approach to compare the nine charts under different specifications
on false alarm rate and mean shift range. Moreover, the probability
distribution of the mean shift d will also be handled explicitly as an
input factor. The main findings obtained in this study include:
(1) the SPRT chart is more effective than the CUSUM chart and X

chart by 58% and 126%, respectively, from an overall viewpoint;
(2) the optimization design of the charting parameters can increase
the detection effectiveness by 29% on average, and it can further
increase the power by 35% if enhanced by the adaptive feature;
(3) using either AEQL or Average Ratio of ATS (ARATS) as the
measure, the overall performance ranking of the charts is found
identical in general; (4) the more effective charts also have more
robust or stable performance under different conditions; (5) the
optimal CUSUM chart is the most effective and robust fixed sample
size and sampling interval (FSSI) chart and the optimal SPRT chart is
the best choice among the adaptive charts and (6) the optimal
sample sizes nX of the X charts often fall beyond the conventional
range between 4 and 6, and the optimal sample sizes nCUSUM of the
CUSUM charts is often larger than one. These results and findings,
together with a set of design tables, will provide the SPC users with
useful aids to select and design a suitable chart for their application.

The focus of this study is the monitoring of process mean m. In
SPC for variables, the monitoring of m is an important issue and
has attracted much research effort (Reynolds and Lou, 2010; Ryu
et al., 2010). In fact, in many current SPC applications, only the
process mean is monitored by a control chart. More importantly,
many new techniques and methodologies developed for mean
monitoring can be modified and then applied to the monitoring of
both mean and variance of a variable.

Without loss of generality, only the upper-sided control charts
for detecting increasing mean shifts (d40) are discussed in detail
in this article. The lower-sided charts for detecting decreasing
mean shifts have symmetrical structures and identical operating
characteristics relative to the upper-sided charts. Moreover, only
sustained process shifts are studied as they are probably more
common and most practitioners would probably give higher
priority to detecting them (Reynolds and Stoumbos, 2004a).

In this study, the quality characteristic x is assumed to follow
an identical and independent normal distribution with known in-
control m0 and standard deviation s0 (m0 and s0 may be estimated
from the field records or historical data). It is also assumed that s
is constant, i.e., s�s0. A process shift makes the process mean m
change from m0 to m0þds0 (d is the mean shift in terms of s0 and
called the standardized mean shift). For the convenience of
discussion, x will be converted to z which follows a standard
normal distribution when process is in control.

z¼
x�m0

s0
ð1Þ

The in-control and out-of-control performances of a control
chart is usually measured by the Average Time to Signal (ATS). The
in-control ATS0 must be large enough so that false alarm occurs
infrequently. On the other hand, the out-of-control ATS should be
short enough in order to detect the process shifts quickly. In this
study, the out-of-control ATS is computed under the steady-state
mode. It assumes that the process has reached its stationary
distribution at the time when the process shift occurs.

The remainder of the article proceeds as follows. The nine
control charts will be introduced in the next section, followed by
the discussion of the general methodologies of the comparative
study. The chart performance will be first compared for a general
case, and then further studied in a factorial experiment. Subse-
quently, the design tables are introduced, and an illustrative
example is presented. The discussions and conclusions are drawn
in the last section.

2. Nine control charts

It is impossible to include all the control charts with different
types and versions in any comparative study. In this study, nine
typical and representative charts will be investigated. They are
categorized into three types (X, CUSUM and SPRT) and three
versions (basic, optimal, fully adaptive or FA).

Basic Optimal Fully adaptive

X Basic X Optimal X VSSI X

CUSUM Basic CUSUM Optimal CUSUM VSSI CUSUM
SPRT Basic SPRT Optimal SPRT VSI SPRT

Each type or version has distinctive level of performance and
different ways for implementation. The X type charts (Shewhart,
1931) decide process status based on the observations in the
latest sample. The CUSUM type charts (Page, 1954) consider
the data in all sample points by checking the cumulative sum.
The EWMA type charts also utilize the cumulative information in
a series of samples. However, they are not included in this study
as their performance is quite similar to that of the CUSUM type
charts (Reynolds and Stoumbos, 2004b). The SPRT charts are
developed based on the sequential probability ratio test (Wald,
1947). A typical model of the SPRT chart proposed by Stoumbos
and Reynolds (1997) will be employed in this article. This SPRT
chart allows the sample size to vary based on the data observed at
the current sample. Its statistical properties are evaluated based
on an assumption that the time required to obtain an individual
observation is short enough to be neglected, relative to the
sampling interval.

The basic version of each type of charts serves as the baseline
for the comparison and its charting parameters are determined
according to common wisdoms and conventions. Contrarily, the
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parameters of the optimal and FA charts will be determined
analytically aiming at the best overall performance.

Each control chart is designed subject to two constraints
related to the inspection rate and false alarm rate. The inspection
rate is equal to the ratio between the average sample size and the
average sampling interval. The resultant or actual inspection rate
(r0) must be no larger than the allowed inspection rate (R), i.e.,

r0rR: ð2Þ

Moreover, the in-control ATS0 must be made equal to or larger
than a specified value (t) that depends on the requirement on
false alarm rate.

ATS0Zt: ð3Þ

Some introductions to the design and implementation of each
of the nine charts are given below:

(1) The basic X chart: This chart has three parameters: the sample
size n, sampling interval d and control limit H. According to the
common practice in SPC, the sample size n usually takes a value
between four and six (Montgomery, 2009). In this study, n is set
at five. The sampling interval d depends on the allowed inspec-
tion rate (constraint (2)), and the control limit H is decided by the
required false alarm level (constraint (3)).

(2) The optimal X chart: This chart also has three parameters n,
d and H. However, its sample size n, as an independent design
variable, will be determined by an optimization design. Other
two parameters d and H are treated as dependent variables
and still determined by the two constraints (2) and (3).

(3) The VSSI X chart: This chart has six parameters: the sample size
n1 and n2 (n1on2), sampling interval d1 and d2 (d14d2), warning
limit w and control limit H (woH). Firstly, as recommended by
many researchers (Runger and Montgomery, 1993), the shorter
sampling interval d2 is fixed at a minimum allowable value
(dmin). Then the sample sizes n1, n2 and the longer sampling
interval d1 are taken as the independent design variables and are
determined by an optimization search. The warning limit w and
control limit H are determined by constraints (2) and (3),
respectively. During implementation, if zrw (z is the sample
mean of the standardized x), the smaller sample size n1 and
longer sampling interval d1 are employed for the next sample,
otherwise n2 and d2 are in use. Different warning limits could be
used for adapting the sample sizes and sampling intervals.
However, only one warning limit is being used in most studies,
because it is relatively easier to be designed and implemented
and may gain most of the benefits that can be reached by an
adaptive chart (Zhang and Wu, 2006).

(4) The basic CUSUM chart: This chart has four parameters: n, d,
H and reference parameter k. According to the recommenda-
tion in most papers (Reynolds and Stoumbos, 2004a), the
sample size n is set as one, because (n¼1) makes the CUSUM
chart much more sensitive to large process shifts and, there-
fore, more effective from an overall viewpoint. In this study,
the reference parameter k is set at 0.5 for dmaxr3.5, at 0.8 for
3.5odmaxr5, and at 1.2 for dmax45, where dmax is the
maximum mean shift. The sampling interval d and control
limit H are determined by the two constraints. An upper-sided
CUSUM chart keeps on examining the cumulative sum Ct.

C0 ¼ 0,

Ct ¼maxð0,Ct�1þZ�kÞ: ð4Þ

When Ct4H, the process is thought out of control.
(5) The optimal CUSUM chart: This chart also has four para-

meters n, d, k and H. The sample size n and reference
parameter k will be determined by an optimization search.

(6) The VSSI CUSUM chart: This chart has seven parameters: n1,
n2, d1, d2, k, w and H. The shorter sampling interval d2 is fixed
at dmin. The independent variables n1, n2, d1 and k will be
determined optimally. The warning limit w and control limit
H are determined by constraints (2) and (3), respectively.

(7) The basic SPRT chart: This chart has four parameters: the
sampling interval d, reference parameter k, lower control limit
g and upper control limit H (goH). To design a basic SPRT
chart, an operating characteristic Average Sample Number
(ASN) also has to be determined. It is actual the average
sample size of the SPRT chart. For the basic SPRT chart, ASN is
set as 3 and k as 0.15 with reference to the cases and
examples presented in Stoumbos and Reynolds (1997). The
sampling interval d is determined by the inspection rate, i.e.,

d¼ ASN=R: ð5Þ

Finally, the two control limits g and H are adjusted simulta-
neously so that constraints (2) and (3) are satisfied. When
taking a sample of an upper-sided SPRT chart, the observation
zi is taken sequentially and the cumulative sum Ci is exam-
ined.

C0 ¼ 0,

Ci ¼ Ci�1þzi�k: ð6Þ

If Ci4H, the process is considered out of control. If grCirH,
sampling will be continued. Finally, if Ciog, the process is
considered in control and the current sampling is terminated.

(8) The optimal SPRT chart (Ou et al., 2011a, b): This chart also
has four parameters d, k, g and H. The sampling interval d and
reference parameter k will be optimized.

(9) The VSI SPRT chart (Ou et al., 2011a, b): This chart has six
parameters: d1, d2, k, w, g and H. The independent variables
d1, d2, k and w will be determined optimally. The dependent
variables g and H are determined so that constraints (2) and
(3) are satisfied. During implementation, if the sample mean z

of a sample is smaller than w, the longer sampling interval d1

is adopted for the next sample, otherwise d2 is to be used. The
sample size used to calculate z is a random variable rather
than a constant.

While the ATS values of the X chart can be calculated by simple
formulae, the ATS values of the CUSUM and SPRT charts are
evaluated by the Markov procedure. The detailed procedure for
the SPRT charts (including the VSI SPRT chart) can be found in Ou
et al. (2011a, b).

3. Methodologies of the investigation

3.1. Specifications

To carry out the design of a control chart, all or part of the
following four specifications have to be determined:

(1) The allowed inspection rate (R). The value of R depends on the
available resources such as manpower and instrument.
Usually, only the in-control (or long run) value of R is
considered, because a process often runs in an in-control
condition for a long period and only occasionally falls into an
out-of-control status for a short time period. The inspection
rate in the short out-of-control period has little influence on
the long run value of R and is of much less concern (Arnold
and Reynolds, 2001).
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(2) The minimum allowable value (t) of the in-control ATS0. The
value of t is decided based on the requirement on false
alarm rate.

(3) The maximum value (dmax) of the mean shift d. The value of dmax

may be determined based on the knowledge about a process (e.g.,
the maximum possible mean shift in a process) or on the shift
range the users are interested to investigate. The optimal values
of the reference parameter k of the CUSUM and SPRT charts
usually increase along with the increase of dmax.

(4) The minimum allowable value (dmin) of sampling interval d. The
value of dmin is determined by some practical considerations, such
as the amount of inspection that can be finished in a short time
period or the assumption for a SPRT chart that d must be
significantly larger than the time for taking an observation.

In this study, the time unit is made equal to the time period in
which the available resource allows one unit (or one product) to
be inspected. For example, if the available resource allows five
units to be inspected per hour, the time unit is 12 (¼60/5) min.
This setting has a benefit that the inspection rate R always equals
one. It only influences the scaling of the sampling interval d, but
has no effect on the results of comparison (noted, in the above
example, the actual time t required to inspect a unit is smaller, or
much smaller, than the standard time unit (12 min). That is, an
operator will spend only t min to conduct inspection and the
remaining (12—t) minutes to carry out other operation in each
standard time unit).

In this study, the minimum sampling interval dmin is fixed at
0.3 in terms of the standard time unit. As R and dmin are fixed, only
two remaining specifications t and dmax have to be determined.

3.2. Performance measures

Since it is quite difficult to predict the values of process shifts
in most applications, therefore, it is very important that a control
chart has good performance over the whole process shift range
rather than just for a specific mean shift (Sparks, 2000; Reynolds
and Stoumbos, 2004a; Shu and Jiang, 2006; Wu et al., 2008). A
sound measure of overall effectiveness is the Average Extra
Quadratic Loss (AEQL) based on the quadratic loss function
(Taguchi and Wu, 1980) which is widely used as a design criterion
by many authors (Chou et al., 2000; Reynolds and Stoumbos,
2004b; Zhang and Wu, 2006; Chen and Chen, 2007; Serel and
Moskowitz, 2008). The index AEQL can be calculated by the
following formula (Wu et al., 2004; Reynolds and Stoumbos,
2004b; Ryu et al., 2010).

AEQL¼

Z dmax

dmin

d2ATSðdÞfdðdÞdd: ð7Þ

where fd(d) is the probability density function of mean shift and
ATS(d) is the ATS value resulted from a mean shift d. The method
of Legendre–Gauss Quadrature can be used to compute the
integration quickly and accurately. It is noted that AEQL is a
weighted average ATS using the square of mean shift (d2) as the
weight. This weight can be justified as quality is inversely
proportional to variability (Montgomery, 2009). If a chart has a
small AEQL value, its out-of-control ATS value over the entire shift
range is low, on average.

The use of dmin (dmin40) in Eq. (7) may help to avoid over-
correction against minor shifts. However, since the portion from
zero to dmin usually makes little contribution to the entire
integration of AEQL due to the weight of d2, dmin is set as zero in
this study for simplicity. Then, Eq. (7) can be rewritten as

AEQL¼

Z dmax

0
d2ATSðdÞfdðdÞdd, ð8Þ

In practice, it is very difficult, if not impossible, to estimate the
probability distribution of d, because the data of out-of-control
cases are not only sparse, but also become obsolete when the
assignable causes are identified and removed. As a result, it is
generally assumed explicitly (Domangue and Patch, 1991; Sparks,
2000; Wu et al., 2009) or implicitly (Reynolds and Stoumbos,
2004a, b) that all process shifts occur with equal probability, and
a uniform distribution with a density function of (1/dmax) is used
for d. Consequently, Eq. (8) can be further simplified as follows:

AEQL¼
1

dmax

Z dmax

0
d2ATSðdÞdd: ð9Þ

In this article, AEQL is mainly calculated by the above formula
or based on the uniform distribution assumption. A discussion
regarding the influence of the non-uniform distributions of d on
the AEQL value will be presented in the next section.

Another index, Average Ratio of ATS (ARATS), is probably a
more heuristic measure of the overall performance. It directly
calculates the average of the ratios between the out-of-control
ATS(d) of a chart to be evaluated and the ATS(d)benchmark of a
benchmark chart.

ARATS¼
1

dmax

Z dmax

0

ATSðdÞ
ATSðdÞbenchmark

dd ð10Þ

The chart producing smallest average ATS is usually selected as
the benchmark. By this way, the ARATS values of all charts will be
equal to or larger than one, and the value of (ARATS �1) directly
indicates the degree of inferiority of a chart compared with the
benchmark chart.

In this study, AEQL will be used as the objective function for
the optimization designs of the control charts, because the
computation of AEQL does not require a predetermined bench-
mark chart and therefore is relatively more tractable. Further-
more, the use of AQEL can avoid some possible bias incurred by
the selection of the benchmark.

3.3. Optimization model

Based on the specifications, the charting parameters of the
optimal and FA charts will be determined by the following
optimization model:

Objective function : AEQL¼minimum, ð11Þ

Constraint functions : ARL0 ¼ t, ð12Þ

r0 ¼ R, ð13Þ

Independent or dependent design variables:Charting parameters.
As discussed in the last section, different control charts use

different charting parameters as the independent or dependent
design variables. The optimal values of the independent design
variables are searched so that the objective function AEQL is mini-
mized. Any nonlinear programming can be used to search the optimal
solution. The dependent design variables are adjusted to meet the
two constraints (12) and (13). The two constraints are treated as
equality constraints rather than inequality ones. This helps to make
full use of the available resources and chart capacity. In actual
computer coding, they are implemented as

9ARL0�t9o1,9ðr0�RÞ=R9o0:005: ð14Þ

In the optimization designs, an optimal combination of sample
size and sampling interval is usually searched under the constraint on
inspection rate. This seems to violate the rational subgroups concept.
However, due to the increasing demands on high quality products,
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the increase of production rate and the wide applications of on-line
measurement and distributed computing systems in today’s SPC
(Woodall and Montgomery, 1999), sampling frequency becomes
higher and sampling intervals may be much smaller than the working
shifts. As a result, the concept of rational subgroups becomes less
effective. It is especially true for CUSUM and SPRT charts (Hawkins
and Olwell, 1998). In fact, when researchers (Reynolds and Stoumbos,
2004a) investigated the best combination of sample size and sam-
pling interval for a control chart, they always disregarded the rational
subgroups concept.

4. A general case

The nine control charts are first compared for a general case in
which specifications are set as below:

t¼ 740,dmax ¼ 4: ð15Þ

It is recalled that other two specifications for inspection rate R

and minimum sampling interval dmin are fixed as (R¼1) and
(dmin¼0.3).

The nine charts are designed based on this set of specifications
and the charting parameters are listed in Table 1. The ATS values of
the charts are calculated within the mean shift range from zero to
dmax (¼4.0), and also displayed in Table 1. The curve of the
normalized ATS (i.e., ATS/ATSVSI SPRT) versus d is illustrated in Fig. 1.

From both Table 1 and Fig. 1, it is observed that the difference
between the ATS values of the nine charts is very substantial. The
curves in Fig. 1 reveal that the SPRT type charts (in Fig. 1(c))
significantly outperform the CUSUM type charts (in Fig. 1(b)), and
the latter are substantially more effective than the X type
charts (in Fig. 1(a)). On the other hand, within each type of charts,
the FA version outperforms the optimal version which in turn
surpasses the basic version from an overall viewpoint. For most of
the cases, a chart is unable to produce smaller ATS than other

Table 1

ATS values of the nine charts (t¼740, dmax¼4).

Basic x Optimal x VSSI x Basic CUSUM Optimal CUSUM VSSI CUSUM Basic SPRT Optimal SPRT VSI SPRT

n1¼5 n1¼3 n1¼2 n1¼1 n1¼2 n1¼1 d1¼3.0000 d1¼1.3419 d1¼1.3919

d1¼5.0000 d1¼3.0000 n2¼2 d1¼1.0000 d1¼2.0000 n2¼2 k¼0.1500 k¼0.4500 d2¼0.6419

H¼1.1046 H¼1.5286 d1¼2.4419 k¼0.8000 k¼0.6838 d1¼1.3419 g¼0.4651 g¼0.6928 k¼0.4000

d2¼0.3000 H¼3.1405 H¼1.5917 d2¼0.3000 H¼10.8355 H¼5.0004 g¼0.8790

w¼0.5762 k¼0.5500 ASN¼3.0010 ASN¼1.3425 w¼0.7243

H¼1.9666 w¼0.8769 H¼5.3416

H¼3.0916 ASN¼1.2909

d
0.0 740 740 740 740 740 740 740 739 740

0.4 84.4 117 119 82.2 70.7 39.0 13.7 32.3 30.5

0.8 17.7 27.5 23.2 17.5 15.2 6.61 4.87 5.50 5.43

1.2 6.05 9.04 5.95 6.96 6.34 3.05 2.91 2.33 2.29

1.6 3.27 3.96 2.40 3.95 3.70 1.95 2.14 1.41 1.36

2.0 2.62 2.28 1.56 2.68 2.51 1.43 1.78 1.02 0.98

2.4 2.51 1.71 1.31 2.00 1.84 1.15 1.62 0.83 0.81

2.8 2.50 1.54 1.23 1.59 1.42 0.98 1.54 0.74 0.73

3.2 2.50 1.51 1.20 1.31 1.17 0.87 1.51 0.70 0.69

3.6 2.50 1.50 1.19 1.10 1.05 0.80 1.50 0.68 0.68

4.0 2.50 1.50 1.19 0.92 1.01 0.74 1.50 0.67 0.67

AEQL 16.5153 13.8385 11.0411 11.5658 10.6298 6.6370 9.0738 5.2821 5.1795

PCI 3.1886 2.6718 2.1317 2.2330 2.0523 1.2814 1.7519 1.0198 1.0000

ARATS 3.0001 2.8427 2.2442 2.4054 2.1943 1.3019 1.5927 1.0229 1.0000
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charts at all shift points or values (Reynolds and Stoumbos, 2006).
However, as long as one chart has smaller ATS at more points and/
or to a larger degree, this chart is thought to be more effective
than others. It is noted that, the VSI SPRT chart almost always
produces the lowest ATS across the entire mean shift range
compared with other charts, except that it is less sensitive to
very small d (i.e., do0.9) than the basic SPRT chart (see Fig. 1(c)).
The ATS of the VSI SPRT chart may be several times smaller than
the ATS of the X and CUSUM charts. However, the superiority of
the VSI SPRT chart over the optimal SPRT chart is minor.

The values of the two overall performance indices AEQL

(Eq. (9)) and ARATS (Eq. (10)) are also shown in Table 1, together
with another index, Performance Comparison Index (PCI). The
index PCI is the ratio between the AEQL of a chart and the AEQL of
the best chart under the same conditions (i.e., the same specified
values of t and dmax, as well as the same probability distribution
of d that will be discussed shortly). This index facilitates the
performance comparison and ranking based on AEQL. The chart
with the lowest AEQL has a PCI value equal to one, and the PCI

values of all other charts are larger than one. Since the VSI SPRT
chart has the smallest AEQL in this general case, it stands as the
best chart and

PCI¼
AEQL

AEQLbest chart
¼

AEQL

AEQLVSI SPRT
: ð16Þ

The VSI SPRT chart is also used, in this general case, as the
benchmark for calculating ARATS in Eq. (10). These three indices,
AEQL, ARATS and PCI, provide fairly comprehensive information
regarding the comparison of the overall performance of the
charts.

If the nine charts are to be ranked from the most effective one
to the least effective one for this general case, it is interesting to
find that the ranking based on PCI and ARATS are exactly the same
as below

VSI SPRT, optimal SPRT, VSSI CUSUM, basic SPRT, optimal CUSUM,

VSSI X, basic CUSUM,optimal X,basic X chart: ð17Þ

This is an evidence that the above ranking is reasonable and
trustful. Since both PCI and ARATS usually deliver the similar
results about the relative performance of the charts, only PCI will
be pursued in the following discussions.

From the ranking in Eq. (17), it is noted that, without the
optimization design, a SPRT chart may be less effective than a
VSSI CUSUM chart and a CUSUM chart may be less effective than a
VSSI X chart.

It is noteworthy that, in all above discussions, AEQL is deter-
mined by Eq. (9) which implies that the mean shift d follows a
uniform distribution. In practice, the distribution of d is likely to
be non-uniform. However, since it is very difficult to estimate this
probability distribution, one may have to design the control
charts based on a uniform distribution assumption.

A concern arises how well these charts will work and compare
with each other if the actual distribution of d is quite different
from a uniform one. A test is carried out on the nine charts for the
general case in this section. It is noted that all these charts are
designed based on the assumption of uniform distribution. Now
they are applied to three different cases or processes. In each case,
the mean shift d follows a beta probability distribution with the
following density function:

fdðdÞ ¼
GðaþbÞ

GðaÞGðbÞ
da�1
ðdmax�dÞb�1

ðdmaxÞ
aþb�1

ð18Þ

The three beta distributions serve as the representatives of
different types of non-uniform probability distributions of d
(Fig. 2). The skewness of a beta distribution depends on the

parameters a and b. If (aob), d has a probability distribution
skewed to right. This represents the situations where most of the
shifts cluster to the lower end within the shift range. If (a4b), d
has a probability distribution skewed to left. Finally, if (a¼b), d
has a symmetrical probability distribution. With a given prob-
ability distribution fdðdÞ, the AEQL produced by a control chart is
calculated by the general formula (Eq. (8)) rather than the
uniform formula (Eq. (9)).

Now each of the nine control charts that were designed based
on the uniform assumption (their charting parameters are listed
in Table 1) is applied to three processes with different fdðdÞ as
shown in Fig. 2. That is, the AEQL value is calculated by Eq. (8). The
resultant AEQL values under the three beta distributions, as well
as the AEQL values under the uniform distribution, are displayed
in the top half of Table 2. As expected, the AEQL values produced
by all nine charts become smaller when the probability distribu-
tion fdðdÞ is skewed to right, and they become larger when fdðdÞ is
skewed to left. The bottom half of Table 2 shows the PCI (the ratio
of AEQL/AEQLbest) values for each case (or under each column for a
particular distribution). For example, each PCI value under the
column ‘‘skew to right’’ is obtained by dividing each AEQL value
under that column by the AEQL value of the VSI SPRT chart that
also appears under that column, as the VSI SPRT chart has the
smallest AEQL value (3.9259) for the beta distribution that is skew
to right. Consequently, a PCI value indicates the AEQL value of a
chart relative to the AEQL value of the best chart when both charts
are designed under the same t and dmax and applied to the
process with the same fdðdÞ. The rightmost column in the bottom
half of Table 2 displays the average PCI of a chart over three
different beta distributions.

The numbers inside the parentheses in the bottom half of
Table 2 indicate the rankings of the PCI values in each column. It is
found that the ranks in each column are quite similar to the
ranking under the uniform assumption with only one exchange of
chart ranking positions under the three columns of ‘‘symmetri-
cal’’, ‘‘skew to left’’ and ‘‘average’’, and two exchanges under the
column of ‘‘skew to right’’. Specifically, the PCI value of each chart
under column of ‘‘uniform’’ is quite close to its counterparts under
the columns of ‘‘symmetrical’’ and ‘‘average’’. This implies that, if
a chart is designed using a uniform assumption, the relative
performance of this chart (or its ranking position) will be nearly
the same if the actual distribution of d is either uniform or
symmetrical. Furthermore, if d has different fdðdÞ under different
circumstances or at different times, the average PCI at the right
most column will also be close to that when fdðdÞ is uniform.

The above discussions show that the probability distribution of
d has some, but quite limited, influence on the relative perfor-
mance of the control charts and, therefore, designing control
charts based on a uniform distribution is a viable design practice.
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Usually, if a chart designed by using a uniform fdðdÞ has a better
(or worse) performance compared to other charts, it also has
better (or worse) performance under different non-uniform fdðdÞ.

Some SPC practitioners may have some idea regarding the
shape of the probability distribution ed(d) in a particular process.
For example, they may believe that ed(d) tends to be skewed to
right (or left). Then, a further question is whether the optimal
design for a chart is heavily or only slightly dependent on the
choice of ed(d). Wu et al. (2010) study the optimization designs of
several CUSUM charts based on the real probability distribution
ed(d). That is, during the optimization designs, the objective
function AEQL is calculated by Eq. (8) instead of Eq. (9). Their
results show that none of the charts that is designed based on the
real distribution ed(d) can bring about notable improvement in
terms of AEQL compared with the counterpart chart designed
based on a uniform distribution. For example, suppose that d
follows a beta distribution that is skewed to the left (a¼2, b¼4).
A CUSUM chart designed based on this real shift distribution has
k¼1.8500 and AEQL¼33.3977. On the other hand, a CUSUM chart
designed based on a uniform distribution has k¼1.6500 and
AEQL¼33.5110. This can be seen that, even though the design
based on the real shift distribution has changed the optimal value
of k considerably, it reduces AEQL only slightly (by 0.34%). The
reason may be that the AEQL value is nearly constant within a
wide range around the optimal design point. As a result, it seems
that the choice of ed(d) does not have much effect on the optimal
design of a chart and it is reasonable to conduct the optimal
design based on a uniform distribution.

5. A factorial experiment

Next, a factorial experiment is carried out in order to further
study and compare the performance of the nine charts. Three
factors will be considered including the two specifications t and
dmax, and the parameters of the probability distribution fdðdÞ of

mean shift d. Each of these factors will be studied in two levels

t : 400,1200

dmax : 2,6

fdðdÞ : ða¼ 2,b¼ 4, skew to rightÞ,ða¼ 4,b¼ 2, skew to leftÞ

It results in eight different cases or combinations of the three
factors. The general case discussed in the last section is nearly at
the center of this experiment space.

The data (the PCI values) obtained from this experiment are
displayed in Table 3. As before these PCI values are calculated for
each case or under each column. For example, for the first case or
under the leftmost column, the AEQL value of each chart is first
determined under (t¼400, dmax¼2, (a¼2, b¼4)). Since the VSI
SPRT chart has the smallest AEQL in this case, then the PCI value of
each chart is obtained by dividing its AEQL by the AEQL of the VSI
SPRT chart. Here, a PCI value again indicates the AEQL value of a
chart relative to the AEQL value of the best chart when both charts
are designed under the same t and dmax and applied to the
process with the same fdðdÞ. In this factorial experiment, the VSI
SPRT chart usually outdoes all other charts in terms of AEQL under
different cases. However, the optimal SPRT chart is also very
competitive and always has an AEQL value very close to that of
the VSI SPRT chart. Especially in cases 4 and 8, the AEQL of the
optimal SPRT is slightly smaller than that of the VSI SPRT chart. In
these two cases, PCI¼AEQL/AEQLoptimal SPRT, as the best chart here
is the optimal SPRT chart rather than the VSI SPRT chart.

The rightmost two columns in Table 3 display the sample
mean PCI and sample standard deviation SPCI of the PCI values of
each chart over the eight cases. The sample mean PCI is the most
holistic measure of the effectiveness of a chart, considering not
only different specifications t and dmax but also various prob-
ability distributions fdðdÞ of the mean shift d. Here, the average of
PCI, rather than the average of AEQL, of each chart is considered,
because the average of AEQL is biased to the cases in which the
AEQL values are generally larger (e.g., when dmax is larger and/or
when fdðdÞ is skewed to left). According to PCI , the charts are

Table 2

Effect of the probability distribution of d (t¼740, dmax¼4).

Uniform Beta

Skew to right (a¼2, b¼4) Symmetrical (a¼b¼3) Skew to left (a¼4, b¼2)

AEQL

Basic x 16.5153 11.0699 13.5982 19.6084

Optimal x 13.8385 13.3216 11.9419 13.2512

VSSI x 11.0411 10.5211 8.8610 10.1756

Basic CUSUM 11.5658 10.9260 11.2765 12.2855

Optimal CUSUM 10.6298 9.8356 10.2953 11.3009

VSSI CUSUM 6.6370 5.2405 6.0800 7.5722

Basic SPRT 9.0738 5.0826 8.0077 12.0306

Optimal SPRT 5.2821 4.0413 4.5856 5.9182

VSI SPRT 5.1795 3.9259 4.4818 5.8294

Uniform Beta Average

Skew to right Symmetrical Skew to left

PCI

Basic x 3.1886 (9) 2.8197 (8) 3.0341 (9) 3.3637 (9) 3.0725 (9)

Optimal x 2.6718 (8) 3.3933 (9) 2.6646 (8) 2.2732 (8) 2.7770 (8)

VSSI x 2.1317 (6) 2.6800 (6) 1.9771 (5) 1.7456 (4) 2.1342 (5)

Basic CUSUM 2.2330 (7) 2.7831 (7) 2.5161 (7) 2.1075 (7) 2.4689 (7)

Optimal CUSUM 2.0523 (5) 2.5053 (5) 2.2972 (6) 1.9386 (5) 2.2470 (6)

VSSI CUSUM 1.2814 (3) 1.3349 (4) 1.3566 (3) 1.2990 (3) 1.3302 (3)

Basic SPRT 1.7519 (4) 1.2946 (3) 1.7867 (4) 2.0638 (6) 1.7151 (4)

optimal SPRT 1.0198 (2) 1.0294 (2) 1.0232 (2) 1.0152 (2) 1.0226 (2)

VSI SPRT 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1)

Y. Ou et al. / Int. J. Production Economics 135 (2012) 479–490 485



Author's personal copy

ranked as follows:

VSI SPRT, optimal SPRT, VSSI CUSUM, basic SPRT, VSSI X

optimal CUSUM,

basic CUSUM, optimal X,basic X chart: ð19Þ

This is nearly the same as the ranking in Eq. (17) found for the
general case in the last section, with the only exception that the
optimal CUSUM chart and the VSSI X chart swap the positions.

The sample standard deviation SPCI is a measure of the
variability of the PCI values of a chart under different cases. If a
chart has a smaller SPCI, its PCI value will vary less under different
situations, and this chart is more desirable in sense of perfor-
mance robustness. For example, the SPCI of the optimal SPRT chart
is very small, and then the PCI values of this chart are always
equal or very close to one. Contrarily, the basic X chart has a very
large SPCI, thus its PCI value is relatively small for some cases (e.g.,
2.4901 in case 2) and becomes extremely large for other cases
(e.g., 5.2780 in case 5). This reveals that the degree of the
inferiority of the basic X chart to the best chart or other charts
alters severely under different conditions. It is an undesirable
feature.

Fig. 3(a) illustrates the PCI values of the nine charts. It clearly
shows that the SPRT type charts outperform the CUSUM type
charts and the latter outdo the X type charts. The grand average
PCI SPRT of the SPRT type charts (i.e., the average of the PCI values
of the basic SPRT, optimal SPRT and VSI SPRT charts) is equal to
1.2300. Similarly, the grand average PCI CUSUM is 1.9437 for the
CUSUM type charts and PCI X is 2.7805 for the X type charts. This
indicates that, from an overall viewpoint, the SPRT chart is more
effective than the CUSUM and X charts by 58% and 126%,
respectively. Within each type, the FA version outperforms the
optimal version and the latter surpasses the basic version. The
grand averages of the PCI values for the FA, optimal and basic
versions are PCI adaptive ¼ 1:4571, PCI optimal ¼ 1:9680 and
PCI basic ¼ 2:5291. This reveals that the FA chart outperforms the
optimal chart and basic chart by 35% and 74%, respectively.

Fig. 3(b) illustrates the SPCI values of the nine charts. Surpris-
ingly, the patterns and characteristics of Fig. 3(b) is very much the
same as that of Fig. 3(a). It means that if a type or a version of
charts have higher detection effectiveness, they will also have
higher performance robustness. This shows a double benefit that
can be gained by using more advanced control charts.

The t values of 400 and 1200 used in the factorial experiment
are selected according to the common practice in SPC. However,
in some applications, much smaller or larger t value may have to
be taken into consideration for the chart design and evaluation. In

order to acquire more insight of the effect of t on the overall
performance of the control charts, the nine charts are further
designed and compared by using three different t values of 100,
740 and 5000. The value of dmax is fixed as 4 for all three cases. It
is noted that case 2 with (t¼740) is the general case in (15).

The resultant AEQL values are displayed in the top half of
Table 4. The bottom half of this table shows the PCI values for
each case. The numbers inside the parentheses indicate the
rankings of the PCI values in each case or column. It is found
that the ranks for (t¼100) and (t¼5000) are quite similar to
the ranking for (t¼740) with only one or two exchanges of the
ranking positions. Specifically, as shown in Fig. 3(a), the VSI
and optimal SPRT charts are always the two most effective charts,
and the optimal CUSUM chart is consistently the best FSSI chart.
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Table 3
PCI values of the charts in a factorial experiment.

Chart t¼400 t¼1200 PCI SPCI

dmax¼2 dmax¼6 dmax¼2 dmax¼6

a¼2 a¼4 a¼2 a¼4 a¼2 a¼4 a¼2 a¼4

b¼4 b¼2 b¼4 b¼2 b¼4 b¼2 b¼4 b¼2

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

Basic x 2.9858 2.4901 2.8118 4.2490 5.2780 3.1858 3.0294 4.2196 3.5312 0.9495

Optimal x 2.7122 2.5183 3.4175 1.2212 3.7999 3.0056 3.4266 1.8351 2.7420 0.8701

VSSI x 2.0447 1.8972 2.2488 1.1011 2.8178 2.1955 2.3665 1.8755 2.0684 0.4931

Basic CUSUM 2.5641 2.7367 2.0699 1.1360 3.3807 3.2411 2.6928 1.2966 2.3897 0.8297

Optimal CUSUM 2.2307 2.3857 1.8988 1.1852 2.8558 2.7805 2.3805 1.4110 2.1410 0.6036

VSSI CUSUM 1.3560 1.3969 1.2097 1.0719 1.4779 1.4681 1.2899 1.1322 1.3003 0.1516

Basic SPRT 1.0466 1.4568 1.6566 2.5599 1.0599 1.4260 1.5863 2.5399 1.6665 0.5882

Optimal SPRT 1.0193 1.0151 1.0342 1.0000 1.0467 1.0057 1.0454 1.0000 1.0208 0.0192

VSI SPRT 1.0000 1.0000 1.0000 1.0097 1.0000 1.0000 1.0000 1.0112 1.0026 0.0049

Y. Ou et al. / Int. J. Production Economics 135 (2012) 479–490486



Author's personal copy

The results of this test convince that the value of t does not have
much effect on the ranking of the charts.

6. Design tables

The earlier discussions highlight the importance of properly
selecting and designing a control chart for a SPC application. This
section provides three design tables (Tables 5–7) for three
specified values of t (t¼400, 740 and 1200). Inside each table,
dmax is specified at three levels (dmax¼2, 4 and 6). The users can
select a chart for which the tabulated values of t and dmax are
closest to the desired values for their application. These three
design tables should cover many applications in SPC practice.

For each set of specified t and dmax, only the charting para-
meters of the optimal and FA versions of the control charts are
listed. The basic versions are not recommended, because they are
substantially less effective and robust than the optimal versions.
Moreover, the implementation of a basic chart is in no way easier
than that of a corresponding optimal chart as the optimization
design only changes the values of the charting parameters.

The Average Sample Number (ASN) is also displayed for
each SPRT chart. It provides the information of the average

Table 5
Design table (t¼400).

dmax Chart n1 n2 d1 d2 k g w H ASN PCIR PCIS PCIL PCIAVE

2 Optimal x 6 – 6.0000 – – – – 0.8859 – 2.7122 2.6648 2.5183 2.6318

VSSI x 4 4 5.1662 0.3000 – – 0.3429 1.1620 – 2.0447 1.9100 1.8972 1.9506

Optimal CUSUM 5 – 5.0000 – 0.4000 – – 0.7153 – 2.2307 2.4039 2.3857 2.3401

VSSI CUSUM 1 2 1.8500 0.3000 0.4419 – 0.4468 2.9318 – 1.3560 1.3911 1.3969 1.3813

Optimal SPRT – – 2.0500 – 0.4000 0.0679 – 4.9591 2.0505 1.0193 1.0085 1.0151 1.0143

VSI SPRT – – 2.0000 0.4257 0.3419 0.4704 0.4000 5.4665 1.7226 1.0000 1.0000 1.0000 1.0000

4 Optimal x 2 – 2.0000 – – – – 1.8214 – 3.2923 2.4917 1.8654 2.5498

VSSI x 2 2 2.3338 0.3000 – – 0.6816 1.8208 – 2.1290 1.7697 1.6887 1.8625

Optimal CUSUM 2 – 2.0000 – 0.6338 – – 1.4803 – 2.1397 2.0644 1.8379 2.0140

VSSI CUSUM 1 2 1.3338 0.3000 0.6000 – 0.7482 2.6132 – 1.2840 1.2933 1.2495 1.2756

Optimal SPRT – – 1.3419 – 0.5000 0.5707 – 4.0534 1.3464 1.0000 1.0101 1.0281 1.0127

VSI SPRT – – 1.3419 0.7419 0.4500 0.8221 0.7162 4.2440 1.2564 1.0125 1.0000 1.0000 1.0042

6 Optimal x 1 – 1.0000 – – – – 2.8070 – 3.4175 2.0063 1.2212 2.2150

VSSI x 1 1 1.1838 0.3000 – – 0.7956 2.8076 – 2.2488 1.4264 1.1011 1.5921

Optimal CUSUM 1 – 1.0000 – 0.9500 – – 2.3320 – 1.8988 1.5316 1.1852 1.5385

VSSI CUSUM 1 2 1.1338 0.3000 0.7081 – 1.1011 2.5283 – 1.2097 1.1545 1.0719 1.1454

Optimal SPRT – – 1.1338 – 0.6581 0.7807 – 3.1191 1.1381 1.0342 1.0000 1.0000 1.0114

VSI SPRT – – 1.1838 0.7419 0.4500 1.1308 0.9068 3.9498 1.1314 1.0000 1.0025 1.0097 1.0041

Table 4

Effect of t (dmax¼4).

AEQL

t¼100 t¼740 t¼5000

Basic x 14.0442 16.5153 25.0768

Optimal x 7.6535 13.8385 25.0768

VSSI x 6.0614 11.0411 20.4194

Basic CUSUM 6.4842 11.5658 19.0516

Optimal CUSUM 6.4724 10.6298 16.1194

VSSI CUSUM 5.1008 6.6370 8.3825

Basic SPRT 8.6478 9.0738 9.3382

Optimal SPRT 4.5980 5.2821 5.8848

VSI SPRT 4.5130 5.1795 5.7254

PCI

t¼100 t¼740 t¼5000

Basic x 3.1119 (9) 3.1886 (9) 4.3799 (9)

optimal x 1.6959 (7) 2.6718 (8) 4.3799 (8)

VSSI x 1.3431 (4) 2.1317 (6) 3.5665 (7)

Basic CUSUM 1.4368 (6) 2.2330 (7) 3.3276 (6)

Optimal CUSUM 1.4342 (5) 2.0523 (5) 2.8154 (5)

VSSI CUSUM 1.1302 (3) 1.2814 (3) 1.4641 (3)

Basic SPRT 1.9162 (8) 1.7519 (4) 1.6310 (4)

Optimal SPRT 1.0188 (2) 1.0198 (2) 1.0278 (2)

VSI SPRT 1.0000 (1) 1.0000 (1) 1.0000 (1)

Table 6
Design table (t¼740).

dmax Chart n1 n2 d1 d2 k g w H ASN PCIR PCIS PCIL PCIAVE

2 Optimal x 7 0 7 – – – – 0.8871 – 3.2605 3.0304 2.7798 3.0236

VSSI x 4 4 5.5919 0.3000 – – 0.2568 1.2738 – 2.5233 2.1419 2.0038 2.2230

Optimal CUSUM 5 0 5.0000 – 0.4000 – – 0.8651 – 2.5720 2.7047 2.6172 2.6313

VSSI CUSUM 1 2 1.9743 0.3000 0.3919 – 0.4972 3.5447 – 1.3677 1.4190 1.4549 1.4139

Optimal SPRT – – 2.1581 – 0.3419 0.1709 – 6.4181 2.1627 1.0000 1.0008 1.0283 1.0097

VSI SPRT – – 2.0081 0.3757 0.2919 0.6072 0.4500 7.0177 1.7459 1.0033 1.0000 1.0000 1.0011

4 Optimal x 3 0 3.0000 – – – – 1.5286 – 3.3933 2.6646 2.2732 2.7770

VSSI x 2 2 2.4419 0.3000 – – 0.5762 1.9666 – 2.6799 1.9771 1.7456 2.1342

Optimal CUSUM 2 0 2.0000 – 0.6838 – – 1.5917 – 2.5053 2.2972 1.9386 2.2470

VSSI CUSUM 1 2 1.3419 0.3000 0.5500 – 0.8769 3.0916 – 1.3349 1.3566 1.2990 1.3302

optimal SPRT – – 1.3419 – 0.4500 0.6928 – 5.0004 1.3425 1.0294 1.0232 1.0152 1.0226

VSI SPRT – – 1.3919 0.6419 0.4000 0.8790 0.7243 5.3416 1.2909 1.0000 1.0000 1.0000 1.0000

6 Optimal x 2 0 2.0000 – – – – 1.9670 – 2.8722 2.0619 1.7941 2.2427

VSSI x 1 1 1.2919 0.3000 – – 0.5329 3.0000 – 2.9443 1.6706 1.2000 1.9383

Optimal CUSUM 1 0 1.0000 – 0.9500 – – 2.6509 – 2.1942 1.7186 1.2940 1.7356

VSSI CUSUM 1 2 1.1338 0.3000 0.6581 – 1.2672 2.9721 – 1.2730 1.2076 1.1027 1.1944

Optimal SPRT – – 1.1838 – 0.5500 0.8229 – 4.1604 1.1882 1.0000 1.0088 1.0273 1.0120

VSI SPRT – – 1.1838 0.7419 0.4500 1.1651 0.9068 4.5698 1.1300 1.0232 1.0000 1.0000 1.0077
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sample size. But ASN is not a charting parameter and is not
needed for operating a SPRT chart.

As aforementioned, the sampling intervals, as well as the
specification t, in the design tables are expressed in terms of a
time unit equal to the time period in which the available resource
allows one product to be inspected. This setting will be further
explained in the next section of the example.

From the design tables, it is found that the optimal sample
sizes of all control charts increase along with the increase of t
and/or the decrease of dmax. Specifically, the optimal sample sizes
are often quite different from the conventional settings. For
example, the sample sizes nX of the optimal X charts are equal
to 1 or 2 when dmax¼6 (compared with 4rnX r6 by convention)
and the sample sizes nCUSUM of the optimal CUSUM charts are
equal to 5 or 6 when dmax¼2 (compared with the commonly
recommended value of nCUSUM¼1).

It is also noted that the two sample sizes n1 and n2 of a VSSI X

chart are always the same. This means that a VSI X chart is actually
as effective as a VSSI X chart. For any X chart, there may be an
optimal sample size which is very critical to the overall performance
of the X chart. The deviation of either n1 or n2 of a VSSI X chart from
this optimal value may result in the increase of AEQL.

The rightmost four columns in each design table enumerate
the values of PCIR, PCIS, PCIL and PCIAVE for each chart. Here, PCIR

carries the PCI value of the chart when the real probability
distribution of d is a beta distribution skew to right. Similarly,
PCIS or PCIL is related to the beta distribution that is symmetrical
or skew to left. Finally, PCIAVE is the average of PCIR, PCIS and PCIL.
The data related to the variability of PCI (e.g., SPCI in Table 3) have
not been listed, because, as found earlier, the robustness of a chart
is usually positively correlated with its effectiveness.

Usually, the users are not aware of the accurate distribution of
d. However, they may have some general and rough idea about it.
For example, they may tell that most of the mean shifts cluster to
the lower end, that is, having a distribution skew to right. Under
such circumstance, they may make use of the data under the
column of PCIR. On the other hand, if the users have no idea at all
about the distribution of d, they can refer to PCIS or PCIAVE. The
latter takes all different distributions into consideration.

In addition to effectiveness and robustness, simplicity in
implementation is also an important consideration when select-
ing a control chart. The adaptive charts (the VSSI X, VSSI CUSUM,
optimal SPRT and VSI SPRT charts) generally have better overall
performance than the FSSI charts (the optimal X and optimal
CUSUM charts), because these adaptive charts allow the sampling

rate to vary at each sampling point. However, it will in turn
increase the difficulty to run the charts. This operational complex-
ity cannot be overcome just by means of a computer, because the
changes of sample sizes and sampling intervals must be carried
out by the operators or an automatic inspection system. Among
the four adaptive charts, the implementation of the optimal SPRT
chart is relatively easier, because this chart uses a fixed sampling
interval and only adapts the sample size. On the other hand, the
FSSI charts use fixed sample size and sampling interval, therefore
they are simpler for operation. The optimal X chart is especially
easy for implementation. However, if a computer-aided SPC
system is in use, there is almost no difference in the difficulty
of running the two FSSI charts (i.e., the optimal X and optimal
CUSUM charts).

The four types of PCI in the design tables facilitate the users to
consider both effectiveness of performance and simplicity in
operation when selecting a chart. If the PCI value shows that the
improvement gained by a complicated chart in effectiveness and
robustness is insignificant, it may not be worthwhile to replace a
simpler chart by this complicated one. On the contrary, if the
achievable improvement in terms of PCI is substantial, the users
may believe that the gain in effectiveness and robustness should
be sufficient to outweigh the increase in complexity.

As a general guideline, the optimal CUSUM chart and optimal
SPRT chart are recommended for most of the SPC applications.
Considering the difference in the difficulty of implementation, the
optimal CUSUM chart is selected for the FSSI charts when the
users prefer to using fixed sample size and sampling interval, and
the optimal SPRT chart for the adaptive charts when detecting
speed is critical and the users would like to adopt adaptive feature
for better performance. The optimal CUSUM chart is the most
effective and robust FSSI chart and can be implemented as easily
as the optimal X chart when an on-site computer is available. The
optimal SPRT chart may be the best choice among the adaptive
charts. This chart is almost as effective and robust as the VSI SPRT
chart and is much better than the VSSI X and VSSI CUSUM charts.
Meanwhile, the optimal SPRT chart enjoys the ease of using a
fixed sampling interval. All other three adaptive charts (i.e., the
VSSI X, VSSI CUSUM and VSI SPRT charts) have to change both
sample sizes and sampling intervals during the operation. Some
SPC users or researchers may not be familiar with the SPRT chart.
However, taking both performance and simplicity into considera-
tion, it is strongly recommended that the VSSI X and VSSI CUSUM
charts can be replaced by the optimal SPRT chart in all applica-
tions of the adaptive charts.

Table 7
Design table (t¼1200).

dmax Chart n1 n2 d1 d2 k g w H ASN PCIR PCIS PCIL PCIAVE

2 Optimal x 8 0 8.0000 – – – – 0.8750 – 3.7999 3.4091 3.0056 3.4049

VSSI x 5 5 6.6500 0.3000 – – 0.2850 1.1794 – 2.8178 2.3416 2.1955 2.4517

Optimal CUSUM 6 0 6.0000 – 0.3919 – – 0.7979 – 2.8558 2.9593 2.7805 2.8652

VSSI CUSUM 1 2 1.8500 0.3000 0.3919 – 0.6306 3.9189 – 1.4779 1.4906 1.4681 1.4788

Optimal SPRT – – 2.1581 – 0.3419 0.1851 – 7.1053 2.1606 1.0467 1.0149 1.0057 1.0224

VSI SPRT – – 2.2581 0.3757 0.2919 0.5248 0.3500 7.8742 1.8727 1.0000 1.0000 1.0000 1.0000

4 Optimal x 3 0 3.0000 – – – – 1.6206 – 4.2193 2.9484 2.3118 3.1598

VSSI x 2 2 2.6500 0.3000 – – 0.4190 2.0750 – 3.1906 2.1523 1.8439 2.3956

Optimal CUSUM 2 0 2.0000 – 0.6838 – – 1.7655 – 2.7835 2.4621 2.0492 2.4316

VSSI CUSUM 1 2 1.3500 0.3000 0.5081 – 1.0141 3.5403 – 1.3773 1.3974 1.3472 1.3740

Optimal SPRT – – 1.3419 – 0.4000 0.8039 – 5.9984 1.3444 1.0364 1.0131 1.0010 1.0169

VSI SPRT – – 1.3919 0.7419 0.3500 0.9199 0.8743 6.5433 1.3393 1.0000 1.0000 1.0000 1.0000

6 Optimal x 2 0 2.0000 – – – – 2.0755 – 3.4266 2.2357 1.8351 2.4991

VSSI x 2 2 2.2081 0.3000 – – 0.8672 2.0753 – 2.3665 1.8867 1.8755 2.0429

Optimal CUSUM 1 0 1.0000 – 0.9500 – – 2.9033 – 2.3805 1.8726 1.4110 1.8880

VSSI CUSUM 1 2 1.1338 0.3000 0.6581 – 1.2828 3.1827 – 1.2899 1.2343 1.1322 1.2188

Optimal SPRT – – 1.1338 – 0.5000 1.0683 – 4.7723 1.1378 1.0454 1.00554 1.0000 1.0170

VSI SPRT – – 1.1838 0.6419 0.4000 1.2501 1.0568 5.4789 1.1365 1.0000 1.0000 1.0112 1.0037
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7. An example

An illustrative example is shown in this section (Wu et al.,
2009). A manufacturing factory produces a type of shaft for an
aero-engine. The diameter x of the shaft is a key dimension. An
upper-sided control chart will be adopted to detect the increasing
mean shift of x. The nominal value and tolerance of x are specified
as 6570.009 mm. From pilot runs it is found that the probability
distribution of x is approximately normal and the in-control
standard deviation s0 is estimated to be 0.0015 mm. The in-
control mean m0 can be easily adjusted to the nominal value of
65 mm (i.e., the center between the specification limits). In order
to standardize the design and operation, the diameter x is
converted to z conforming to a standard normal distribution
when the process is in control.

z¼
x�65

0:0015
:

The inspection rate is set as one unit/h and thus the time unit
is equal to one hour or 60 min. The in-control ATS0 is specified as
700 h by the Quality Assurance (QA) engineer. The QA engineer is
interested to study the chart performance in a mean shift range
(0odr4), i.e., dmax¼4. Based on the above specifications, a
design can be selected from Table 6 (where t is equal to 740,
close to 700) and within the catalog of (dmax¼4). Since the QA
engineer has no idea about the probability distribution of the
mean shift d, he checks PCLAVE to figure out the effectiveness and
robustness of the control charts. The PCLAVE values show that the
optimal SPRT chart is only about 2% less effective than the most
effective VSI SPRT chart. Furthermore, the former uses a fixed
sampling interval and thus can reduce some operational diffi-
culty. The QA engineering finally decides to adopt the optimal
SPRT chart for monitoring the mean of the diameter. The para-
meters (sampling interval d, reference parameter k, lower control
limit g and upper control limit H) of this optimal SPRT chart can
be picked up from Table 6 and listed below, together with the
resultant ASN, ATS0 and inspection rate r0.

d¼ 1:3419,k¼ 0:4500,g ¼ 0:6928,H¼ 5:0004,ASN¼ 1:3425,ATS0 ¼ 740,r0 ¼ 1:

It is noted that the sampling interval d¼1.3419�60¼
80.5140 min. In order to facilitate the implementation, d is rounded
off to 80 min. This adjustment will change the value of ATS0 to 734
(0.81% smaller than the original value of 740) and increase the value
of r0 to 1.0069 (0.69% larger). Both changes are minor and tolerable.

To run this optimal SPRT chart, one sample is inspected for
every 80 min. The sample size varies, but its average is equal to
1.3425. In each sample of the optimal SPRT chart, the statistic Ci is
updated based on each observed zi.

C0 ¼ 0,

Ci ¼ Ci�1þzi�k:

If Ci4H, an increasing mean shift is signaled. On the other
hand, if Ci is smaller than g, the process is thought in control. For
other circumstances, sampling will be continued.

Fig. 4 displays the ATS curve of this optimal SPRT chart. Also
presented are the ATS curves of the VSSI X and VSSI CUSUM charts
for the purpose of comparison. Fig. 4(a) shows the ATS curves over
the whole shift range except for very minor d. When (d¼0), the
in-control ATS0 values of all charts are very close to t. Fig. 4(b)
zooms in the ATS curves under moderate and large mean shifts. It
can be seen that the optimal SPRT chart consistently produces
smaller out-of-control ATS values over the entire mean shift range
compared with other two charts. The two ratios of (AEQLVSSI_x/
AEQLoptimal_SPRT) and (AEQLVSSI_cusum/AEQLoptimal_SPRT) are equal to
2.1037 and 1.2646, respectively. This means that the average
speed of the optimal SPRT chart for detecting out-of-control cases

is higher than that of the VSSI X and VSSI CUSUM charts by 110%
and 26%, respectively. Meanwhile the optimal SPRT chart is easier
for implementation as it uses fixed sampling interval.

8. Discussions and conclusions

This article carries out a systematic comparison among three
main types of control charts (X, CUSUM and SPRT charts), each
with three versions (basic, optimal and fully adaptive (FA) ver-
sions), for monitoring process mean. The comparisons are con-
ducted under various conditions, including not only different in-
control ATS0 and mean shift ranges, but also various probability
distributions of mean shift d. A Performance Comparison Index,
PCI, is proposed as the measure of the relative overall perfor-
mance of the charts.

This study ranks the charts in line of both types and versions
according to detection effectiveness and performance robustness.
It gives the quantitative evaluation of the superiority of one chart
compared with others. Such information will facilitate the users
to select a chart based on both superiority in performance and
simplicity in implementation. By summing up all the results, the
optimal CUSUM and optimal SPRT charts are recommended as the
best FSSI and adaptive charts, respectively. One may even get
some general idea about the relative performance of many other
charts by referring to the nine charts studied in this article. For
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example, the performance of a VSI CUSUM chart must be between
the optimal CUSUM chart and the VSSI CUSUM chart.

Both the optimal and adaptive charts are designed by an
optimization procedure using Average Extra Quadratic Loss
(AEQL) as the objective function. The optimization design of the
control charts is strongly recommended, as it can significantly
improve the overall performance of the charts and meanwhile
does not increase the difficulty in implementation. The optimal
values of many charting parameters (e.g., the sample sizes of the
X and CUSUM charts) may be far different from the ones based on
the common conventions.

The comparison of performance robustness is first discussed in
this study. It is found that the ranking of the charts on robustness
is usually the same as the ranking on effectiveness. The more
effective charts also have more stable performance under differ-
ent conditions.

This study also provides several design tables containing 54
charts for different design specifications. These tables will aid the
users to select a chart by considering both performance and
simplicity in implementation, as well as the probability distribu-
tion of mean shift d.

In this study, the Average Extra Quadratic Loss (AEQL) and
Average Ratio of ATS (ARATS) are used to evaluate the overall
effectiveness of the control charts. Both give similar results. If
other alternative measures are employed, the numerical results
may be somewhat different, but the general conclusions pertain-
ing to the performance comparison of charts should be similar.

This study is conducted based on some general assumptions
and conventions, such as the known in-control mean m0 and
standard deviation s0, and the normal distribution of x. It is
interesting to carry out further studies on how the performance
comparison will be affected when m0 and s0 are estimated, or
when the quality characteristic follows a non-normal distribution
or is correlated. Furthermore, a more systematic investigation
should be conducted to study the effect of the probability
distribution of the mean shift d on the optimization designs of
all the control charts.

Probably, the most interesting extension of this study is to
evaluate and compare the performance of the control charts for
detecting two-sided mean shifts of a variable or shifts in both
mean and variance. The optimization designs of these charts are
more difficult, because the properties of these charts cannot be
easily obtained from the properties of the individual one-sided
charts and their optimal charting parameters are different from
the optimal parameters of the one-sided charts. Due to the
limitation on the length of an article, all these issues will be
pursued in the future works.
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