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The purpose of profile monitoring is to check the stability over time of relationships between response
variables and one or more explanatory variables. In many applications, categorical response variables are
common and a generalized linear model is usually utilized to model this kind of profile for quality improve-
ment. In practice, different profiles often have random explanatory variables and these variables require
careful monitoring as well. Statistical process control is important and challenging for monitoring profiles in
such situations. A novel control chart is proposed by integrating an exponentially weighted moving-average
scheme and a likelihood-ratio test for the parameters of a logistic regression model. This new scheme not
only monitors the functional relationship of the profile but also the mean of the explanatory variables. The
proposed chart has reasonable computational and implementation complexity and is efficient in detecting
shifts. The simulation results show that it performs better than the standard benchmarks in the literatures
for the array of simulation examples that we consider. A real example from the electronic industries is used
to illustrate the implementation of the proposed approach.

Key Words: Categorical Response; Exponential Weighted Moving Average; Generalized Linear Model; Pro-
file Monitoring; Random Explanatory Variables; Statistical Process Control.

Introduction

TATISTICAL PROCESS CONTROL (SPC) schemes
have been widely applied in various industries.

In most applications, the quality of a process can be
characterized by the distribution of a single variable
or multiple variables, and a variety of univariate and
multivariate control schemes have been developed to
monitor the process. However, in some applications,
the quality of a process must be characterized by a
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functional relationship between the response variable
and one or more explanatory variables, in addition
to the distribution of the variables. Therefore, stud-
ies on profile monitoring have proliferated in recent
years. An extensive discussion of research problems
on this topic was given by Woodall et al. (2004).

Studies focusing on simple linear profiles have
been particularly common, for instance, Kang and
Albin (2000), Kim et al. (2003), Mahmoud and
Woodall (2004), Zou et al. (2006; 2007b), among sev-
eral others. Multiple and polynomial regression pro-
file models were considered by Zou et al. (2007a),
Kazemzadeh et al. (2008), Mahmoud (2008), Jensen
et al. (2008), and Jensen and Birch (2009). Nonlin-
ear profile models were investigated by Williams et
al. (2007). Recently, nonparametric profile monitor-
ing for general profiles has also attracted much atten-
tion. The reader is referred to Zou et al. (2008, 2009)
and Qiu et al. (2010) for Phase II methods based on
nonparametric regression and to Ding et al. (2006),
Colosimo et al. (2008), Chicken et al. (2009), and
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FIGURE 1. Aluminium Electrolytic Capacitors.

Zhang and Albin (2009) for procedures using vari-
ous dimension-reduction techniques, such as wavelet
transformations and independent component analy-
sis. A recent review of the literature was given by
Woodall (2007).

All the above-mentioned control schemes for mon-
itoring linear and/or nonlinear profiles require the
fundamental assumption that the response variables
are continuous. However, due to practical restric-
tions, e.g., time, cost, or intrinsic characteristics of
the variables, often qualitative response variables are
easily collected for on-line monitoring. For instance,
on some production lines, each item is inspected and
classified as conforming or nonconforming, accord-
ing to some predefined specification on its quality
characteristic. Similarly, a service level can also be
assessed as satisfactory or unsatisfactory. In such sit-
uations, the observed qualitative responses are typi-
cally related to some quantitative predictor variables.
The profile to be investigated is therefore a func-
tional relationship between a binary (or binomial)
response variable and one or more continuous pre-
dictor variables. One real example is the manufacture
of an aluminium electrolytic capacitor (AEC), which
is displayed in Figure 1. The quality of the AEC is
inspected based on the specifications of some vari-
ables, and the inspection output is “pass” or “fail”.
Besides the binary output, the quality of AECs is re-
lated to the levels of some predictor variables, e.g.,
the dissipation factor and the leakage current. The
functional relationship between the binary output
and these continuous predictor variables is critical to
maintaining process and product quality and should
be monitored (we investigate this example further in
the next section), as we propose in this paper.
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With respect to monitoring categorical data, be-
sides conventional charts, such as p and np charts,
various types of charting schemes have been devel-
oped, such as Steiner (1998), Reynolds and Stoumbos
(2000), and Somerville et al. (2002), etc. However,
regarding profile-monitoring schemes for categorical
data, few studies have been conducted. Steiner et al.
(2000) proposed risk-adjusted cumulative-sum charts
to monitor surgical performance, which are applica-
ble to a logistic regression model, but these charts
were purposefully developed for surgical outcomes
that follow Bernoulli distributions and assumed the
parameter’s value after shifts occurred was known,
i.e., a known odds ratio. Gurevich and Vexler (2005)
also considered changes in parameters of logistic re-
gression models, but they studied how to estimate a
change point. In the literature, we have not found
any research mainly focusing on Phase II profile
monitoring in cases where the response variables
are categorical. Yeh et al. (2009) proposed Phase I
profile-monitoring schemes for binary responses that
could be represented by a logistic regression model.
They modeled the relationship between the binary
response and explanatory variables using a logistic
regression model and studied how to extend the clas-
sical T2-chart for monitoring profiles with continuous
data to logistic regression profiles.

In Phase I, a set of process data is gathered and
analyzed. Any unusual “patterns” in the data lead
to adjustments and fine tuning of the process. Once
all such assignable causes are accounted for, we are
left with a clean set of data, gathered under stable
operating conditions and illustrative of the in-control
(IC) process performance. This dataset, which is re-
ferred to as the IC dataset, is then used for estimat-
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ing certain IC parameters of the process. In Phase
IT SPC, the estimated IC process parameters are
used, and the major issue of this phase is fast de-
tection of shifts in the profiles. Besides the funda-
mental difference between the Phase I profile mon-
itoring considered in their paper and the Phase II
monitoring considered here, their approach assumes
that the explanatory variables are fixed from profile
to profile. These assumptions are (approximately)
valid in certain calibration applications in manu-
facturing industries. In other applications, however,
they may be invalid (Qiu and Zou (2009)). Specifi-
cally, when data acquisition adopts a random-design
scheme, design points within a profile would be in-
dependently and identically distributed (i.i.d.) ran-
dom variables from a given distribution (Qiu and Zou
(2009)). In a random-design scheme, the values of
predictors in each profile sample would be different.
Therefore, the existing schemes may not be applica-
ble in such a case, and how to efficiently use the data
from a random design scheme in the Phase II stage
needs attention. Moreover, in such situations, the ex-
planatory variables’ observations themselves require
careful monitoring and control, along with the pro-
file monitoring. This issue is unique to the random-
design profile situation. Phase II profile monitoring
in such cases is particularly challenging for fast de-
tection of shifts and is the focus of this paper.

In this paper, we utilize a logistic regression
model, a type of generalized linear model (GLM), to
represent the functional relationship between the bi-
nary response and explanatory variables, which are
assumed random with specified in-control distribu-
tions. Under this premise, a control scheme is pro-
posed based on exponentially weighted moving aver-
age (EWMA) process-control schemes. This control
scheme is able to simultaneously monitor for shifts
in the logistic regression parameters as well as in the
means of the explanatory variables. The remainder
of this paper is organized as follows: We elaborate
on the AEC example to motivate this research in
the next section. After that, our proposed method-
ology is described in detail. The average run length
(ARL) performance is then thoroughly investigated
via Monte Carlo simulation. Following that, the mo-
tivating example, which has a profile that is fit well
by a logistic regression model, is used to illustrate
the implementation of the proposed approach step
by step. Finally, several remarks conclude the arti-
cle. Certain technical details are provided in the Ap-
pendix.

Journal of Quality Technology

A Motivating Example

We use an example taken from the manufacture
of an AEC (provided by ENW Electronics Ltd.;
see Figure 1) to motivate this research. During the
process, raw materials, including anode aluminum
foil, cathode aluminum foil, guiding pin, electrolyte
sheet, plastic cover, aluminum shell, and plastic tube,
are transformed into AECs with given specifications.
The quality of the unfinished AEC products (or ca-
pacitor elements) in terms of appearance and func-
tional performance is inspected by sampling. The in-
spection result will either be “pass” or “fail”. During
the process, some important characteristics in the
specification of AECs, such as leakage current (LC)
and dissipation factor (DF), are automatically mea-
sured by an electronic device at some given measur-
ing voltage, frequency, and temperature.

The number of defective capacitors in a certain
sample of size n, denoted by y, is an obvious qual-
ity measurement. The current industrial practice is
usually to monitor the mean change of this variable.
However, as mentioned above, in the on-line process,
the DF and LC are also collected for each capacitor.
These two variables are usually randomly distributed
and both affect the defective rate of AECs to a cer-
tain extent. In this example,n =1 and y =1 or 0. If
we denote the predictor variables DF and LC by z;
and z, the sample data is comprised of (y,z1,Z2).
The relationship between y and 1,22 can be mod-
eled as a logistic regression model with binary re-
sponse,

logit(p) = a + B1z1 + Baw2,

where p is the defect rate and it is assumed that
y ~ Bernoulli(p). To estimate the model parameters,
a, B1, and fo, a dataset of size N, {yi, 21, Toi}ry
are required. The changes in the mean of z; and 2
indicate the changes of DF and LC values of prod-
ucts, and the changes in «, 5, and (G indicate that
the relationship between the defect rate and the DF
and LC of products changes, which indicates that
special causes may have occurred. For example, cos-
metic defects of AECs may induce a shift of the func-
tional relationship. Therefore, jointly monitoring the
relationship between y and {z1,z2} and the mean
of {z1,72} may give more complete information for
effective monitoring and diagnosis and may result in
better quality improvement. In the remainder of this
paper, we propose an SPC scheme to monitor such
a profile in Phase II and give a step-by-step demon-
stration of how to implement the proposed scheme
in practice in a later section.
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Methodology

Profile Model and Assumptions

In this subsection, we describe the modeling of
the profile with a GLM regression model and ran-
dom predictor variables. We then elaborate on the
binary (binomial) responses and the corresponding
logistic regression as they are relevant to our appli-
cation and as an example to illustrate our method.
The extension to general cases will be discussed in
the final section.

Assume thiat, for the jth (§ > 1) random profile
sample collected over time, we have the observations
(X;,¥;), where y; = (y;1,...,y;jn) is an N-variate
response vector and Xj is an N x q regressor matrix.
N is the sample size of profiles, which is consistent
with the work of Kang and Albin (2000}, Kim et al.
(2003), and Zou et al. (2007a). It is assumed that
the process observations are collected over time and

follow the profile model
logit(pji) = a; + X;Piﬂj, (1)

1t =1,---,N, 7 =1,...,7,7+1,..., where T is
an unknown change point, y;; is the ith response
observation on the jth random profile, x}; denctes

the ith row of 5(]- (such as z; and z3 in the above
example), «; is the intercept parameter, and g; =
(Bijye-es ﬂqj)T is a g-dimensional parameter vector.
Here y;; is assumed to be drawn from a binomial (or
Bernoulli) distribution, with parameter p;;, denoted
Yji ~ Binomial(n;;, pj;), where n;; is the sample size
for the ith observation of the jth profile. Note that,
in the AEC example, n;; = 1 and y;; is a binary re-
sponse. p;; represents the ith defect rate of the prod-
ucts in the jth profile sample. Typically, when one
group or batch of products is generated according
to a particular setting of predictor variables, such as
temperature and pressure (represented by Xj;), nj;
would be greater than one; when the setting of pre-
dictor variables is unique to one product, as that in
the motivating example, n;; = 1. In addition, we also
assume X;; ~ Ng(p;, X) in this paper.

It is assumed that, after an unknown change point
T, there is a change in the intercept and /or coefficient
and/or the mean vector of explanatory variables. Say
a; =), Bj =By, #j =nw) forj<T,
a; =aqy, B; =By, #j=npqa) forj>r,

and o) # o) and/or B # By and/or u(y #
w(1)- Here we shall assume that N > g + 1, which is
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not restrictive and can be easily satisfied in practical
applications.

The maximum likelihood estimations (MLEs) of
the model parameters ¢ = (o, 87)T can be obtained
via the standard GLM procedure by using the iter-
ative weighted least square (IWLS) method. Details
on how to obtain the MLE ¢ are presented in Ap-
pendix A. The index “;” is suppressed here for ease of
exposition. It can be seen that, under the IC model,
E | X asymptotically follows the multivariate normal
distribution

E1X 55 Nyt (g0, XTWX) ™),

in which ¢9 = (a(o),,@(TO))T, X = (il,...,)"{N)T is
an N x (¢ + 1) matrix and %; = (1,x])T, and
W = diag{ws,...,wn} denotes the GLM weight

functions, where w; = [n;p;(1 — p;)].

Control Schemes for Monitoring the Profile
Model (1)

In this section, we propose a control scheme based
on the profile model (1), in which the (g + 1)-variate
parameter vector ¢ and the g-variate mean vector u
can be simultaneously monitored. Recall the model
(1) and associated notation. The joint log likelihood
of (f(j,yj) can be expressed as (see Appendix B for
details)

N
=Y logC¥: + ysi(ay + x58;)
=1

— nj;log [1+ exp{(a; +x;;6;)}]
1

— —;‘(sz’ — p,j)TZ_l(in - ll'j)- (2)

The MLEs of the profile parameters and the mean of
explanatory variables based on Equation (2), defined
as (€;,/;) = argmax,,l;, can then be obtained.
It is stra]ivghtforward to see that the MLE of p is
B; = 2. 1%X;;/N and ¢; can be obtained via the
procedure in Appendix A.

Based on the MLEs, one straightforward on-line
detection method is to use the current profile esti-
mates to construct two charts for parameters ¢ and
u, respectively. However, each chart has a statistic
that must be updated and plotted and has a con-
trol limit and type I error to be decided. Therefore,
the setup of a scheme including one more chart is
complicated and difficult (Zou et al. (2007a)). An-
other straightforward method is to construct a single
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Shewhart-type T2 chart. However, this would be very
inefficient for detecting moderate and small changes
because it completely ignores the profile samples. As
an alternative, we may consider the EWMA chart,
as in Kim et al. (2003), Zou et al. (2007a), etc. A
natural idea is to first obtain estimates of (¢, ) for
each profile and then apply the multivariate EWMA
chart (Lowry et al. (1992)) to those estimates. How-
ever, this naive approach may not be efficient either,
because only N random explanatory observations are
used for estimating parameters in individual profiles,
and thus the estimators would have considerable bias
and variance.

Alternatively, in order to monitor the functional
relationship and the mean of the explanatory vari-
ables efficiently, we propose a new scheme for
monitoring the profile, based on the exponentially
weighted joint log likelihood at time ¢,

¢
L€, m) =AY (1 =2
Jj=1

N
X Z log C¥i¢ + yji(a + x};ﬂ)
i=1

— nyilog [1 + exp{(a + x;l;ﬂ)}]
- % log |27 3]

where )\ is a weighting parameter. Obviously, the
l¢2(¢,n) in Equation (3) makes use of all available
profile samples up to the current time ¢, and differ-
ent profiles are weighted as in an EWMA chart (i.e.,
more recent profiles are given more weight and the
weight changes exponentially over time). Then the
maximum weighted likelihood estimator (MWLE),
defined as (Et,ﬁt) = argmaxg , l; A (€, 1), can be ob-
taind via the IWLS method (see Appendix C).

After obtaining the MWLE (€;, 7i;), the charting
statistics is defined as

Iry = (& — €O)T2§(€t — &)

+NC N g, )T (B~ o), ()
where
5. = A (XTW,R,)
&  2-—)
R, = (XT,...,X")T,
Et = (z’lI" ’z’tI‘)T’
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W, = diag{#1,..., W}

#; = diag{@1, .., By}

By = M1 — AV I ngipsi(1l — pii),

E = &+ (1 - NE.1, t=12,...,

Eg = pg is the starting vector, and X; = Eivzl xti/N.
The chart signals when Ir; > Ljs, where Ly is the
control limit according to a specific IC ARL, ARLy.
This charting statistic is an approximation of the
likelihood-ratio test statistic based on the weighted
likelihood function (3). Details of the derivation are
presented in Appendix C. After detecting the shift,
the hypothesis testing methods can be used to diag-
nose where the shift occurs. The detailed diagnosis
scheme is not considered in this paper but certainly
deserves future research. Hereafter, this chart is re-
ferred to as the EWMA-GLM control chart.

Performance Assessment

In this section, we investigate the performance of
this new scheme (EWMA-GLM) in detecting shifts in
profile parameters and the mean of random explana-
tory variables through Monte Carlo simulations. It is
challenging to compare the proposed method with al-
ternative methods because there is no obviously com-
parable alternative method in the literature. Here, we
consider the Shewhart-type T2 scheme mentioned at
the beginning of the previous subsection. To be spe-
cific, we define the charting statistic as

T3 = (& — £0)T>3'E-_t1 (& — &o)
+ N(X; — po) T2 t=1,2,...

(5)

where £; is the MLE obtained as in Appendix A,
T, = (X{W,X;)7!, and XY, and W, are the cor-
responding matrices defined at the beginning of the
previous section for the tth profile sample. The chart
signals when T2, > Lg, where Lg is the control limit
chosen to achieve a specific ARLg. We call this chart
the Shewhart-GLM chart.

(it - I"’O):

Another possible alternative method to compare
the proposed method against is the naive EWMA
chart mentioned in the previous subsection, which is
described as follows:

T g = (Ber — €0) 2, (Bes — €0)

N(2-X _
+ “L/\—)(Et - uO)TE 1(Et — 1o),
t=1,2,...
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where
B, =N + (1 -2k, ),
Eee =X+ (1— ME¢-1),

and X, is defined as for Equation (5). We refer to
this naive EWMA scheme as NEWMA-GLM here-

after.

The monitoring performance of the control
schemes in this section is evaluated through ARL
comparisons. Three cases are studied here: (1) the
performance of EWMA-GLM is compared with that
of Shewhart-GLM in detecting shifts in model pa-
rameters and explanatory variables, (2) the perfor-
mance of EWMA-GLM is investigated for differ-
ent smoothing parameters A, (3) the performance of
EWMA-GLM is compared with that of NEWMA-
GLM in detecting shifts in different parameters.
Without loss of generality, we assume the time 7 at
which the shifts initially occur is 40 and only con-
sider the sustained shifts for the remaining samples

after the changepoint . In this section, only the
case of ARLg = 200 is considered. In addition, the
underlying IC model considered here is model (1)

with the two explanatory variables pg = (0,0)T and
3= O(')l 001 . The other parameters are assumed

to be 8 = (1.0,1.0)T and a = —2.2, which make the
expectation of the defective rate p; approximately
equal to 0.1. For the parameter n; in the binomial
distribution and NV in the profile, the values 30 and
20 are used, respectively. The control limits of dif-
ferent control schemes are obtained by simulation to
approximately achieve the given IC ARL. The out-
of-control (OC) ARL results for detecting different
magnitudes of shifts in different parameters are eval-
uated, and all of the results are obtained by running
5,000 simulations.

We compare the OC ARLs of the proposed
EWMA-GLM scheme with those of Shewhart-GLM
for detecting shifts in «, £;, and p1. The smoothing

TABLE 1. ARL Comparisons Between EWMA-GLM with A = 0.2 and
the Shewhart-GLM Scheme in Detecting Various Shifts

din o
Chart 0.05 0.06 0.07 0.10 0.20 0.30 0.50
EWMA-GLM 68.3 524 39.5 19.5 5.68 3.23 1.78
(65.3) (49.4) (35.3) (15.1) (2.87) (1.28) (0.61)
Shewhart-GLM 126 113 100.8 65.6 16.1 4.79 1.31
(125) (112) (101) (64.2) (15.5) (4.22) (0.64)

4 in 61
Chart 0.15 0.20 0.25 0.30 0.50 1.00 1.50
EWMA-GLM 79.0 52.3 34.8 23.8 6.66 3.31 2.13
(74.9) (48.6) (30.3) (19.2) (3.62) (1.45) (0.86)
Shewhart-GLM 168 146 119 98.6 24.2 5.27 1.85
(170) (146) (119) (97.1) (23.5) (4.66) (1.23)

4 in M1
Chart 0.025 0.030 0.035 0.07 0.12 0.15 0.20
EWMA-GLM 85.2 66.4 50.8 13.3 5.44 4.04 2.88
(80.4) (62.4) (47.1) (9.10) (2.51) (1.65) (1.02)
Shewhart-GLM 171 164 149 71.6 20.9 10.4 4.02
(171) (167) (151) (70.1) (20.3) (10.1) (3.45)

Note: Values in parentheses are the standard deviations of ARLs.
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FIGURE 2. ARL Comparison of EWMA-GLM Scheme with Different Smoothing Weights A. The solid, dash-dotted, and
long-dashed lines represent the OC ARL curves of the EWMA-GLM charts with A = 0.1, 0.2, and 0.3, respectively.

constant A in EWMA-GLM is fixed to 0.2, as Zou et
al. (2007a) have done. As shown in Table 1, our pro-
posed EWMA-GLM control scheme performs much
better than the Shewhart-GLM scheme in detect-
ing small and moderate shifts § in any parameter,
while Shewhart-GLM has a slight advantage when
the shifts are very large.

We now study the effect of A on the performance of
EWMA-GLM. The OC ARL results of three EWMA-
GLM schemes with different smoothing parameters
are compared, i.e., A = 0.1, 0.2, and 0.3. As shown
in Figure 2, for those small and moderate shifts, the
EWMA-GLM scheme with a smaller A is superior to

Journal of Quality Technology

the one with a larger X in detecting shifts in param-
eter o, while the EWMA-GLM scheme with a larger
A is better than the one with a smaller A in detecting
large shifts. This property is consistent with that of
the classical EWMA schemes in the literature (Lucas
and Saccucci (1990), Lowry et al. (1992)). Based on
Figure 2 and other simulation results (available from
the authors), the same conclusion can be reached
when shifts occur in other parameters, e.g., 3 and/
or u.

Table 2 shows the comparison results between
the EWMA-GLM scheme and the NEWMA-GLM
scheme for different values of the smoothing param-
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TABLE 2. ARL Comparisons Between EWMA-GLM and NEWMA-GLM Schemes
with Different X in Detecting Various Shifts

A=0.1 A=03
s EWMA-GLM NEWMA-GLM EWMA-GLM NEWMA-GLM
(i) 0.050 52.5 (46.6) 117 (111) 81.0 (79.5) 112 (112)
0.060 39.1 (31.9) 84.4 (75.3) 62.7 (60.7) 90.2 (88.4)
0.070 30.1 (23.2) 61.7 (51.6) 48.4 (46.0) 69.0 (65.7)
0.100 16.9 (10.6) 29.3 (20.1) 24.2 (21.1) 33.8 (30.3)
0.200 6.24 (2.79) 9.04 (3.74) 5.74 (3.38) 7.20 (4.30)
0.300 3.82 (1.44) 5.40 (1.81) 3.01 (1.32) 3.61 (1.50)
0.500 2.18 (0.73) 3.12 (0.89) 1.59 (0.57) 1.97 (0.62)
(ii) 0.150 59.2 (52.4) 77.8 (71.2) 94.8 (92.8) 109 (103)
0.200 37.6 (30.2) 50.6 (43.3) 65.1 (61.6) 77.0 (72.3)
0.250 26.2 (19.1) 35.0 (26.8) 44.7 (42.2) 53.1 (49.5)
0.300 19.0 (12.5) 25.4 (17.7) 30.2 (27.1) 37.3 (33.8)
0.600 7.11 (3.35) 8.85 (4.13) 6.98 (4.45) 8.47 (5.66)
1.000 3.87 (1.62) 4.78 (1.81) 3.09 (1.46) 3.60 (1.61)
1.500 2.56 (1.04) 3.14 (1.05) 1.94 (0.82) 2.22 (0.80)
(i) 0.025 63.1 (57.3) 64.3 (56.9) 101 (97.2) 100 (98.0)
0.030 47.0 (40.7) 49.5 (42.6) 82.7 (78.3) 79.7 (76.8)
0.035 36.6 (29.5) 38.6 (31.3) 66.4 (62.9) 64.3 (61.5)
0.070 11.7 (6.25) 12.4 (6.77) 16.2 (12.9) 15.7 (12.6)
0.120 5.96 (2.45) 6.06 (2.49) 5.49 (2.98) 5.44 (2.94)
0.150 4.66 (1.75) 4.70 (1.78) 3.87 (1.77) 3.82 (1.73)
0.200 3.43 (1.18) 3.45 (1.19) 2.64 (0.99) 2.62 (0.98)

Note: Values in parentheses are the standard deviations of OC ARLs.

eter A. Here we consider three types of shift settings:
(i) a shift in «, (ii) a shift in 8;, and (iii) a shift
in p;. As we can see from this table, our proposed
EWMA-GLM performs much better than NEWMA-
GLM in detecting any given magnitude of shift in
parameters « and 8. When the shift occurs in g, the
performance of the EWMA-GLM scheme is almost
the same as that of the NEWMA-GLM scheme for
the same value of A.

The same shift settings as in Table 2 are also con-
sidered in Table 3. As shown in Table 3, the parame-
ters N and n; affect the performance of the chart in
detecting shifts. A larger N or n; allows the EWMA-
GLM chart to perform better in detecting a shift in
the model parameters o and 3, and larger N im-
proves its performance in detecting the shift in the
mean of predictor variables if the magnitude of n; is
not too small. Therefore, the magnitude of N and n;
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can be decided based on the particular problem. For
a process with a high production rate, a large sample
size can be used, and the proposed method will per-
form well. But for processes with a low production
rate or low defect rates, only a small sample size can
be used, and the proposed method may give inferior
performance.

Although the performance of the EWMA-GLM
chart declines as the parameters N and n; become
smaller, it always performs much better than the
NEWMA-GLM chart in detecting the shift in param-
eters o and 8 and has almost the same performance
as the NEWMA-GLM chart in detecting a shift in the
mean of the predictor variables. In particula, when
n; is extremely small (e.g., n; = 1), the EWMA-
GLM chart outperforms the NEWMA-GLM chart
by quite a substantial margin. The reason is that the
NEMWA-GLM chart only uses data from the current

www.asq.org

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



204 YANFEN SHANG, FUGEE TSUNG, AND CHANGLIANG ZOU

TABLE 3. ARL Comparisons Between EWMA-GLM and NEWMA-GLM Schemes
Under Different N and n; in Detecting Various Shifts (A = 0.2)

(N,n;) = (20, 30) (N,n;) = (10, 30)
5 EWMA-GLM  NWEMA-GLM 5 EWMA-GLM  NWEMA-GLM
(i) 0.050 68.3 (65.3) 114 (113) 0.050 96.4 (94.1) 171 (164)
0.060 52.4 (49.4) 87.4 (83.4) 0.060 79.2 (77.8) 151 (148)
0.070 39.5 (35.3) 66.4 (61.2) 0.070 64.3 (61.4) 130 (127)
0.100 19.5 (15.1) 31.0 (25.5) 0.100 35.7 (31.5) 77.1 (72.5)
0.200 5.68 (2.87) 7.50 (3.78) 0.200 9.9 (6.40) 16.6 (11.4)
i)  0.150 79.0 (75.0) 96.0 (89.4) 0.150 118 (116) 140 (134)
0.200 52.3 (48.6) 64.8 (59.2) 0.200 84.9 (81.7) 114 (113)
0.250 34.9 (30.3) 44.3 (40.1) 0.250 60.8 (58.2) 89.7 (87.6)
0.300 23.8 (19.2) 30.6 (25.3) 0.300 45.1 (41.8) 69.6 (66.6)
0.600 6.66 (3.62) 8.22 (4.56) 0.600 11.9 (8.18) 18.8 (14.0)
(i)  0.025 85.2 (80.4) 84.1 (79.8) 0.025 121 (114) 120 (116)
0.030 66.4 (62.4) 65.7 (60.9) 0.030 103 (99.4) 99.8 (97.4)
0.035 50.8 (47.1) 51.3 (47.5) 0.035 83.7 (83.3) 83.6 (81.8)
0.070 13.3 (9.10) 13.2 (9.00) 0.070 26.6 (22.0) 25.4 (20.5)
0.150 4.04 (1.65) 4.04 (1.63) 0.150 6.52 (3.29) 6.39 (3.21)
(N, ) = (20,15) (N,n;) = (20,1)
5 EWMA-GLM  NWEMA-GLM ) EWMA-GLM  NWEMA-GLM
() 0.050 96.7 (91.7) 172 (169) 0.100 118 (116) 223 (231)
0.060 79.5 (74.5) 149 (148) 0.200 65.5 (62.9) 262 (265)
0.070 65.7 (60.9) 127 (123) 0.300 38.2 (34.8) 319 (319)
0.100 37.2 (33.8) 71.3 (65.9) 0.500 15.4 (12.4) 488 (482)
0.200 9.72 (6.22) 15.0 (10.0) 0.800 6.38 (3.79) 830 (722)
G)  0.150 116 (111) 134 (131) 0.600 108 (104) 174 (176)
0.200 86.5 (81.2) 104 (99.1) 0.800 78.8 (75.1) 168 (171)
0.250 63.3 (58.6) 79.3 (74.7) 1.000 56.9 (52.3) 161 (162)
0.300 46.3 (42.9) 60.2 (55.3) 1.500 25.2 (21.3) 136 (139)
0.600 11.8 (7.95) 15.4 (10.7) 2.500 9.57 (5.93) 99.8 (104)
(i)  0.025 85.3 (81.0) 84.0 (80.4) 0.025 87.5 (82.5) 175 (180)
0.030 67.0 (62.9) 64.9 (61.2) 0.030 69.3 (66.80) 164 (169)
0.035 51.8 (48.6) 51.0 (47.3) 0.035 53.7 (50.50) 152 (155)
0.070 13.3 (9.16) 13.0 (8.86) 0.070 13.6 (9.44) 78.4 (75.5)
0.150 4.05 (1.65) 4.02 (1.63) 0.150 4.01 (1.64) 11.3 (6.57)

Note: Values in parentheses are the standard deviations of OC ARLs.
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profiles, which results in poor estimations due to in-
formation deficiency, while the EWMA-GLM chart
pools the previous and current profiles’ data. This is
the major difference between the EWMA-GLM chart
and the NEWMA-GLM and Shewhart-GLM charts.
Therefore, based on the simulation results in Tables
1-3 and Figure 2, we conclude that our proposed
EWMA-GLM scheme, which incorporates data from
different time points with different weights, is always
superior to the Shewhart-GLM scheme in detect-
ing small and moderate shifts and also better than
the traditional EWMA scheme (NEWMA-GLM) in
detecting any magnitude of shifts occurring in the
model parameters.

A Real-Data Application:
The AEC Profile Monitoring
Case Revisited

In this section, we use data from the AEC manu-
facturing process to demonstrate the implementation
of our proposed EWMA-GLM scheme. Note that, in
the modeling, LC measurements z, are replaced by
x4, which is equal to 22/10. The model is rewritten
as

logit(p) = a + frz1 + Baz5.

Based on 200 historical observations of y and
the predictor variable values x (available on re-
quest from the authors), the estimated parameters
are o = —3.955 and (B1,02) = (—2.049,0.835).
The estimated mean of the predictor variables
is (0.1027,0.1066) and the estimated variance-
covariance matrix ¥ of the predictor variables is

v - (1777 % 107 7.33x 1074
T\ 733x107% 5271 x107% )"

Note that a calibration sample of this size might
be smaller than needed to fully determine the IC dis-
tribution, but it suffices to illustrate the use of the
method in a real-world setting,.

Based on this estimated process model, we sim-
ulate new profiles. In each profile sample, we have
N = 100 observations of y and the corresponding
predictor variable vector x. In addition, 7 = 1 in this
example. The first 20 profiles are generated from the
IC normal operational condition and the remaining
profiles are from the OC condition. Two OC condi-
tions are considered here to illustrate the implemen-
tation of the proposed chart: (1) a shift § = 0.1 in
B1, and (2) a shift § = 0.05 in the mean of x;. The
smoothing constant A is set as 0.2. Our proposed
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FIGURE 3. The EWMA-GLM Control Chart for the AEC
Example. (a) A shift in 1. (b) A shift in p;.

EWMA-GLM scheme for monitoring the profiles is
implemented as follows:

1. Obtain the control limits Ljs for the EWMA-
GLM control chart by simulation to achieve the
desired IC ARL. Here, we obtained the control
limit CL = 17.7 for ARLy=200 and then con-
structed the control chart in Figure 3.

2. Begin monitoring the profiles in Phase II. After
obtaining the new observations, we calculate
the control statistics using Equation (4), and
then plot these control statistics on the control
chart and compare them with the control limit.
From Figure 3, we can see that the EWMA-
GLM chart signals at the fifth OC profile for
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the first case and at the first OC profile for the
second case.

3. Identify and remove the root causes after de-
tecting the shift, and then go back to step 1.
Monitor the profiles continuously based on the
revised control limit,

Conclusion

Statistical process control monitoring is important
and challenging for profiles with categorical data and
random predictor variables. In this paper, we used a
type of GLM model to represent the functional re-
lationship between a binary response variable and
a set of random predictor variables. We proposed a
novel control scheme, the EWMA-GLM, for moni-
toring such profiles. The EWMA-GLM scheme inte-
grates an EWMA scheme and a logistic regression
likelihood-ratio test. As shown by the simulation re-
sults in this paper, for the examples considered in
this paper, the EWMA-GLM scheme almost always
performed better than the Shewhart-GLM scheme
and the NEWMA-GLM scheme, which are bench-
marks for performance comparison based on existing
research.

There are a number of issues not thoroughly ad-
dressed here that could be topics of future research.
First, this paper focuses on Phase II monitoring only
and presumes that the number of historical observa-
tions used for estimating the IC parameters is suf-
ficiently large. In practical applications, the perfor-
mance of the EWMA-GLM would be affected by the
amount of data in the reference dataset (Jensen et
al. (2006)). Thus, determination of required Phase I
sample sizes to reduce the effects of estimated pa-
rameters and a general recommendation are needed.
Second, this new control scheme is proposed based
on a logistic regression model for the profiles. How-
ever, different types of categorical data, e.g., multi-
nomial data, are not uncommon in many industries.
Therefore, new control schemes for monitoring pro-
files with other types of categorical data are interest-
ing topics for further research. This would be adapt-
ing the proposed weighted likelihood-ratio test to the
general GLM model fitting. Moreover, our proposed
scheme assumes that the observations are indepen-
dent within and between profiles. When observations
are dependent, this scheme will not be applicable.
Therefore, how to develop new schemes for dealing
with this correlation is another future research topic.

Journal of Quality Technology

Appendix A:
Derivation of the MLE ¢

The MLE of the model parameters ¢ = (o, 8T)7T
can be obtained via the standard GLM procedure
with the augmented dependent variable z;, as briefly
described in the following. Here we will suppress the
index “5” for ease of exposition. Denote

o _ Yi = Hyi
2; =1 + (yl - :u'y’)a'uyi =Mt nipi(l _pi),

with 7; = o + x1 8, where i = 1,...,N, n; is de-
fined as the linear predictor, and p,; is the mean of
y;, say, n;p;. Moreover, the GLM weight functions
are denoted as W = diag{wx,...,wn}, where w,; =
[nipi(1 — p;)]. Then the GLM augmented dependent-
variable vector is written as

Z=r +W—1(y—ﬂy)7
, and

where z = (z1,...,28)T, n = (M1,...,7¥

By = (/.l,yl, - ,/I,yN)T. Let X = (%4,... ,iN)T,
which is an N x (g+ 1) matrix and %; = (1,x])T. By
McCullagh and Nelder (1989), the MLEs of model
parameters £ can be obtained by using the following
iterative weighted least-square (IWLS):

)T

1. Start with the initial values of &, denoted as
g0,

2. At the Ith iteration, for [ > 0, calculate z() and
WO based on £,
3. Update the estimation of ¢ as follows:

g(l-!—l) — (XTw(l)X) -—lew(l)z(l) )

4. Repeat steps 2 and 3 until the following condi-
tion is satisfied:

IO - gDy [V <6

where ¢ is a given small positive value (e.g.,
¢ = 107%) and |)¢||; denotes the sum of absolute
values of all elements of ¢£. Then, the algorithm
stops at the [th iteration.

Appendix B:
Derivation of the Joint
Log Likelihood

The joint log likelihood of (X;,y;) is
I; = log f(y;, X;)
= log f(y; | X;)f(X;)
=log f(y; | X;) + log f(X;)
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and

log f(y; | X;)

N
= log [ ] Clyipsst (1 — pyi) ™~

i=1
N

= Z log C73* + yji log pji

i=1
+ (45 — Y1) log (1 — pjs)
N
= log C¥% + yje(cy + x5385)
=1
— njilog 1+ exp{(a; +%;6;)}] ,
log f(X;)
1 1 _
=-3 log |2 X| — §(in — 1) TE T (x4s — pg)

Thus, we have

N
I = Zlog Cyt + yjiloy + X};‘ﬁj)

i=1

— nyilog [1 + exp{(e; +x};85)}]
1
—3 log |27X]

1 _
- §(in — 1) ETN (XG5 — )

Appendix C:
Obtain the EWMA-GLM
Charting Statistic

The MWLEs of ¢ and p satisfy the following si-
multaneous score equations:

Ol /0 =0, Ola/Ou=0.
The MWLE of i can be simply expressed as

t
ﬁt = Z)\(l — )\)t-jZin/N.
=1 i

On the other hand, the MWLE of ¢ can be sim-
ilarly obtained via GLM procedure with the aug-
mented dependent variables via the following pro-
cedure. To alleviate the computation burden, we
denote m as a sufficiently large integer to make
(1 — A)™ close to 0. Let X; = (XF 05, X5)7
be an mN X (¢+ 1) matrix, which includes the
most recent m sets of explanatory variable values,
Z = (21_my1r---+2¢ )" be mN-dimensional vector,
and ‘/i’t = diag{Wi_m+1,..., Wi} be an mN x mN
matrix. X; and z; are defined in a similar fash-
ion to the notations in the above subsection, and
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ﬁ/’j = diag{@jl, ey ’lﬁjN}, where 'lﬁji = )\(1 —
A)t=9n;:p;i(1 — pj;). The MWLESs £; can be immedi-
ately obtained by implementing the IWLS procedure
in Appendix A, replacing X, W,z with X;, W, Z;.

After obtaining the MWLE (;,7:), the corre-
sponding log-likelihood ratio test can be defined as

Irs = —2[ls A (€0, 0) — L x (&2, Be))-

Using standard Taylor’s expansion arguments of like-
lihood functions (Serfling (1980)), the expansion of
Ir; leads to asymptotically equivalent Wald-type
charting statistics,

Iry ~ (& — Eo)TEél(éAt — o)

PRVCERY

(Bt — po) 7 (E: — u),
A

where

A ores o

E; =A%+ (1— By, t=12,...,

Eg = po is the starting vector, and X; = Zf;l x4/ N.
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