False Discovery Rate-Adjusted Charting Schemesfor Multistage Process Monitor ...
Yanting Li; Fugee Tsung

Technometrics, May 2009; 51, 2; ABI/INFORM Global

pg. 186

False Discovery Rate-Adjusted Charting
Schemes for Multistage Process Monitoring
and Fault Identification

Yanting LI

Department of Industrial Engineering
and Management
Shanghai Jiao Tong University
Shanghai, China
(ytli@sjtu.edu.cn)

Fugee TSUNG

Department of Industrial Engineering
and Logistics Management
Hong Kong University of Science and Technology
Kowloon, Hong Kong
(season@ust.hk)

Most statistical process control research focuses on single-stage processes. This article considers the prob-
lem of multistage process monitoring and fault identification. This problem is formulated as a multiple
hypotheses testing problem; however, as the number of stages increases, the detection power of multiple
hypotheses testing methods that seek to control the type I error rate decreases dramatically. To maintain
the detection power, we use a false discovery rate (FDR) control approach, which is widely used in mi-
croarray research. Two multistage process monitoring and fault identification schemes—an FDR-adjusted
Shewhart chart and an FDR-adjusted cumulative sum (CUSUM) chart—are established. To apply the
FDR approach, the distribution of the CUSUM statistics are obtained based on Markov chain theory and
Brownian motion with drift models. The detection and fault identification power of the new schemes are
evaluated by the Monte Carlo method. The results indicate that the novel FDR-adjusted approaches are
better at identifying the faulty stage than the conventional type I error rate control approach, especially
when multiple out-of-control stages are present.

KEY WORDS: Distribution of the CUSUM statistic; False discovery rate; Multistage process; State-

space model.

1. INTRODUCTION

As modern technology becomes increasingly sophisticated,
most manufacturing processes, including those producing prin-
ted circuit boards, semiconductors, automobiles, and aerospace
products, include numerous operating stages. For example, the
dielectric layer formulation process in the semiconductor man-
ufacturing industry comprises the sequential stages of spin coat-
ing, soft baking, exposing, developing, curing, and plasma de-
scumming (Kim and May 1999), and up to hundreds of stages
are involved in the automobile assembly process. Because the
demand for professional customer service requires detailed di-
vision of labor, multistage processes can now be found in ser-
vice industries as well. For example, in an international ship-
ping terminal, the vessel discharging service is characterized
by multiple stages; the quay cranes first unload the containers
from vessels to tractors, then the tractors transport the contain-
ers to the container yard; and the yard cranes then unload the
containers from the tractors onto the stacks. In most cases, mul-
tistage processes have a unique cascading property (Hawkins
1993); that is, outputs from operations in the upstream stages
may affect the quality of the downstream stages, and a product
or service variation may propagate throughout the production
or service stages.

Thanks to recent advances in sensing and information tech-
nologies, automatic data acquisition techniques are now com-
monly used in many modern processes with multiple stages,
and large amounts of data and information related to quality
measurements have become available. Thus statistical process
control (SPC) to make use of multistage process data and infor-
mation has become possible. In this work we sought to establish

SPC schemes that efficiently monitor and diagnose multistage
processes involving a large number of stages.

SPC methods are widely used in manufacturing and service
industries for monitoring and diagnosis purposes. But most
SPC research and practices focus on monitoring the output of
a single stage or the quality dimensions of finished products;
work on multistage process monitoring and diagnosis has been
limited. Existing SPC methods for multistage process moni-
toring include two popular approaches, the regression adjust-
ment method and the cause-selecting method. The regression
adjustment method, developed by Hawkins (1991, 1993) and
applied by Hauck, Runger, and Montgomery (1999), Rao et
al. (1996), and others, is applicable because of its ability to
tackle the cascading property of a multistage process. Process
quality variables are regressed on any subset of the other qual-
ity variables. The residuals from the regression models of each
stage can then be charted and monitored. Alternatively, Zhang
(1984, 1985, 1989, 1992) proposed the cause-selecting method,
which is similar in principle to the regression adjustment ap-
proach but with the quality variable at the current stage re-
gressed only on that in the previous stage. This cause-selecting
method has been reviewed by Wade and Woodall (1993). Re-
cent research into the use of cause-selecting charts for multi-
stage processes includes that of Shu, Apley, and Tsung (2003),
Shu and Tsung (2003), and Shu, Tsung, and Kapur (2004). Sim-
ilarly, Zantek, Wright, and Plante (2002, 2006) regressed the

© 2009 American Statistical Association and
the American Society for Quality
TECHNOMETRICS, MAY 2009, VOL. 51, NO. 2
DOI 10.1198/TECH.2009.0019

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




MULTISTAGE PROCESS MONITORING

quality characteristics of each stage on all of the quality char-
acteristics in the preceding stages, and then constructed cumu-
lative sum (CUSUM) charts (Page 1954) on the residuals from
the regression model of each stage.

Although existing SPC methods for multistage process mon-
itoring are popular, a drawback of these methods is that the sta-
tistical models that they use to describe the multistage processes
usually lack an engineering background and and cannot de-
scribe the relationship among stages explicitly. In an attempt
to resolve this problem, several studies on multistage processes
have adopted engineering models with linear state-space model
structures because of their capability to incorporate physical
laws and engineering knowledge to describe the quality link-
age among multiple stages in a process. Jin and Shi (1999) and
Ding, Shi, and Ceglarek (2002) used this structure to consider
a rigid-part assembly process. Djurdjanovic and Ni (2001),
Huang, Zhou, and Shi (2002), and Zhou, Huang, and Shi (2003)
used this structure to analyze multistage machining processes.
Lawless, Mackay, and Robinson (1999) and Agrawal, Lawless,
and Mackay (1999) discussed a car hood assembly process that
could be put into a linear state-space structure to represent vari-
ation transmission across stages (Xiang and Tsung 2008).

Some multistage process diagnosis methods also adopt the
linear state-space model. Ding, Ceglarek, and Shi (2002) pro-
posed a method to map the feature patterns of real production
data with predetermined fault patterns generated from the ana-
lytical model. Ding, Shi, and Ceglarek (2002) and Zhou et al.
(2003) investigated the diagnosability of a multistage process,
which is the ability to distinguish predetermined specific faults
in a multistage process. In contrast, the focus of the present arti-
cle is on distinguishing and identifying the faulty stages, rather
than specific faults, after an out-of-control signal, a topic that
has not been reported in the literature to date. As the number
of stages increases, effectively and efficiently identifying the
faulty stages responsible for changes in a multistage process
can be quite challenging.

A few other multistage process monitoring and diagnosis
methods also adopt the linear state-space model. Zou and Tsung
(2008) utilized directional information based on multistage
state space model and proposed multiple MEWMA scheme for

effective process monitoring and fault diagnosis. By combin-_

ing the same directional information and multivariate two sam-
ple test, Zou, Tsung, and Liu (2008) proposed a novel change
point approach for Phase I analysis of multistage process. How-
ever, their method fails when more than one fault occurs in the
process. In this article, we try to design a multistage process
monitoring scheme that is applicable even in presence of multi-
ple fault. Ding, Ceglarek, and Shi (2002) proposed a method to
map the feature patterns of real production data with predeter-
mined fault patterns generated from the analytical model. Ding,
Shi, and Ceglarek (2002) and Zhou et al. (2003) investigated
the diagnosability of a multistage process, which is the abil-
ity to distinguish predetermined specific faults in a multistage
process. In contrast, the focus of the present article is on distin-
guishing and identifying the faulty stages, rather than specific
faults, after an out-of-control signal, a topic that has not been
reported in the literature to date. As the number of stages in-
creases, effectively and efficiently identifying the faulty stages
responsible for changes in a multistage process can be quite
challenging.
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To tackle the multiplicity problems caused by a large num-
ber of hypotheses, Benjamini and Hochberg (1995) proposed
a novel approach to the problem of multiple hypotheses test-
ing using false discovery rate (FDR) control. FDR is used to
quantify the expected ratio of erroneous rejections to the num-
ber of all of the rejected hypotheses. It has been theoretically
proven that when the number of hypotheses is large, control-
ling FDR is much more powerful than controlling the traditional
type I error rate. When all of the null hypotheses are exactly true
(which is not realistic for the settings that we consider), control-
ling the FDR is equivalent to controlling the type I error rate.
When some of the alternative hypotheses are true, as in practi-
cal applications, controlling the FDR can provide much higher
power. Recent research on FDR control has been reported by
Benjamini and Liu (1999), Benjamini and Hochberg (2000),
Benjamini and Yekutieli (2001, 2005), Genovese and Wasser-
man (2002), Benjamini, Krieger, and Yekutieli (2006), Storey
(2001, 2002), and Storey, Taylor, and Siegmund (2004). FDR
has been extensively studied and applied in many fields, includ-
ing microarray research, which usually involves simultaneously
comparing up to thousands of individual DNA sequences (e.g.,
Tusher, Tibshirani, and Chu 2001; Reiner, Yekutieli, and Ben-
jamini 2003; Qian and Huang 2005; Grant, Liu, and Stoeckert
2005).

Earlier work applying FDR control to SPC can be traced back
to Benjamini and Kling (1999), who investigated the advan-
tages of using p-values in statistical control charts. Marshall et
al. (2004) applied multiple CUSUM charts in health care sur-
veillance, such as monitoring hospital units and doctors. Grigg
and Spiegelhalter (2005) established random-effects CUSUM
charts for hospital mortality monitoring using FDR as a perfor-
mance evaluation criterion. As pointed out by Woodall (2006),
however, their methods were established under quite restrictive
assumptions, such as prespecification of the number of faulty
units and similar mean shift sizes in different faulty units. Be-
sides its application to SPC, FDR control also can be used to
identify important factors and effects in the analysis of two-
level fractional factorial experiments (Tripolski Kimel, Ben-
jamini, and Steinberg 2008).

In this article, we adopt the FDR control technique from mi-
croarray research to enhance the performance of SPC in mul-
tistage process monitoring and fault identification. The article
is organized as follows. Section 2 describes several motivat-
ing examples with multistage processes, Section 3 presents the
state-space model used to characterize the multistage process.
Section 4 introduces the FDR control method to multistage
processes. Sections 5 and 6 present and evaluate two SPC
schemes, the FDR-adjusted Shewhart chart and the FDR-
adjusted CUSUM chart. Section 7 revisits one of the motivating
examples to demonstrate implementation of the newly proposed
FDR-adjusted methods in a multistage process in practice. Fi-
nally, Section 8 provides a few concluding remarks and sug-
gests future studies.

2. MOTIVATING EXAMPLES

Examples of multistage processes can be readily found in
any modern manufacturing or service industry. Here we men-
tion several from the recent literature that motivate our work.
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An Example of Dielectric Layer Formation in the
Semiconductor Industry

Kim and May (1999) investigated a typical multistage
process in semiconductor manufacturing. They described a via
formation process in multichip module dielectric layers com-
posed of photosensitive benzocyclobutene. This process con-
sists of several sequential stages, including spin coating, soft
baking, exposing, developing, curing, and plasma descamming.
At each stage, two quality characteristics—film thickness and
the refractive index of the film—were measured. Kim and May
(1999) constructed sequential neural network process models
to characterize the multistage via formation process. There has
been no subsequent study on monitoring and diagnosing such a
process, however.

An Example of Semiconductor Photolithography in the
Semiconductor Industry

Fenner, Jeong, and Lu (2005) investigated a multistage pho-
tolithography process in semiconductor manufacturing involv-
ing three main stages: spin-coating and baking the photoresist,
exposing the photoresist, and developing the photoresist. Be-
cause of the proprietary nature of the third stage, only the first
two stages were considered. The quality characteristics consid-
ered in the first stage were relative unexposed photoactive com-
pound concentration (Mynexposed) and resist thickness (T). Rel-
ative exposed photoactive compound concentration (Mxposed)
was considered in the second stage. The interstage relationship
was described by the following linear regression models:

Munexposea = 0.91 + 1.61 x 1073BTE — 2.10 x 10755Ps,
T = 1291.98 + 928.333(SPS) ™!/
— 1.62BTI — 19.49BTE,

M exposed = Munexposea — 0.000909D +- 0.00001127T — 0.64,

where BTE is the baking temperature, SPS is the spin speed,
BTI is the baking time in seconds, and D is the exposure
dose. The authors did not explore the monitoring and diagnosis
of such a multistage process in semiconductor manufacturing,
however.

M

An Example From Automobile Assembly

Lawless, MacKay, and Robinson (1999) and Agrawal, Law-
less, and MacKay (1999) investigated four operational stages in
installing car hoods in automobile assembly: hanging, painting,
hardware, and finesse. Each stage contributed to the variance
in the final flushness of the hood to the surrounding fenders.
The relationships between these stages can be characterized by
a state-space model (Xiang and Tsung 2008),

Yi=xi +vi,
2
xiy1 = Bixi + w;

for i = 1,2,3,4 where x; is the true flushness of the right
rear at stage i and y; is the measurement of the flushness.
The model parameters in this example are (Bi, B2, 83) =
(1.15,0.98, 1.06), and the standard deviations of (@, w2, w3)
are (0.13,0.11, 0.2). Again, the authors did not investigate how
to monitor and diagnose such a process. The monitoring issue
based on this model has been further explored by Xiang and
Tsung (2008).
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3. MODELING OF MULTISTAGE PROCESSES

We start by introducing the state-space model that can char-
acterize a multistage process by incorporating physical laws
and engineering knowledge. Extensive reviews of the state-
space model have been provided by Basseville and Nikiforov
(1993) and Shi (2007).

Suppose that the multistage process involves N stages and
that y, ; is the quality measurement of the jth product observed
at the nth operation stage,n=1,...,Nandj=1,2,.... Anin-
control multistage process may be described by the following
state-space model:

Yo, = Cnxnj + Vn s
3)

Xpnj = Anxn—lJ + Wn j,

where X, j denotes the quality information (e.g., part deviation)
at stage n of product j, A, is the dynamic matrix that denotes
the transformation of the quality information from stage n — 1
to stage n, and C, is the observation matrix that relates the
process states, X, j, to the quality measures, y»;. Both A and
C are assumed to be known constant matrixes at stage n, which
may be derived from the process/product design information,
physical laws, and engineering knowledge. In addition,  signi-
fies the unmodeled error, whereas v indicates the measurement
error. Both w and v follow independent multinormal distribu-
tions. Ding, Ceglarek, and Shi (2002) termed the first equation
in (3) the state transition equation and the second the observa-
tion equation. In this article we follow the assumption consid-
ered by Xiang and Tsung (2008) and focus on the univariate
case, where wyj ~ N(0,04,), vnj ~ N(0,0y), and the initial
state xp ~ N(ayg, T2). ap and T are usually assumed known in
advance. Recent research related to the state-space model has
been reported by Zhou, Huang, and Shi (2003), Huang and Shi
(2004), and Ding et al. (2005).

An out-of-control condition with a fault in the current stage
of operation (e.g., a fixture deviation) can be modeled with
an additional term, B, Uy, on the right side of the second
equation of (3). Suppose that after the Jth product, a persis-
tent mean shift of magnitude & occurs at a certain stage, ¢, that
is, Bpj = 1p=¢ j>s and Upj = 8. The out-of-control model can
be written as

Inj = CuXnj =+ Vnjs @

Xn,j =A,,x,,_1J +wnj+ 1,,=(J2;5.

This out-of-control model is depicted in Figure 1.

According to Basseville and Nikiforov (1993), most change
detection algorithms are based on generating “residuals” from
the measurements that reflect the change in the process and
then designing decision rules based on these residuals. Based
on (3), the standardized one-step-ahead forecast error of y, ,
given y,_1 j, as written by Durbin and Koopman (2001), e, ;,
can be calculated from the following recursive method:

-1/2

enj = uUn;V, 2,

Unj = Ynj — Cnitn,j,

Unj = Ap—1Un-1j + Gn-1Vn—1,s

2 2 ®)
Va=C,Wp+o0,,
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Figure 1. The mean shift in stage ¢ in the state transition equation.

Wn=A2_ W1 — A1 Coci Wao1 Gt + 02,
G = AnCanVn_l,

where the initial values vy ; = y;; — C14140, €1 = v1,j/V1,
uj =0, Wi = 02 + A}r?. Durbin and Koopman (2001)
showed that when the process is in control, e,; is indepen-
dently and identically distributed as a standard normal distri-
bution, N(0, 1). When a particular stage, ¢, of the multistage
process undergoes a change, as in (4), ¢;; will experience a
mean shift while its variance remains the same. Thus the multi-
stage process monitoring and diagnosis may be formulated into
the following multiple hypotheses testing problem:

Hyp €nj ™~ N(@©, 1),

Hyin: enj~N(un,l),

n=1,...,N, where u, #0.

Most multiple hypotheses testing methods applied to multi-
stage process monitoring aim to control the type I error rate.
But the power of such methods becomes unsatisfactorily low
when the number of hypotheses is large. To handle the high-
dimensional problem that will surely surface in a multistage
process, we apply the FDR control approach, which controls
the proportion of wrong rejections among all the rejections. We
introduce this method in the next section.

6

4. FALSE DISCOVERY RATE CONTROL METHODS

The conventional approach to multiple hypotheses testing is
to control the risk of a type I error occurring. The Bonferroni
and sequential Bonferroni methods are examples of methods
that take this approach. But multiple statistical tests aimed at
controlling the type I error rate have a serious drawback in terms
of reduced detection power. Trying to minimize the risk of even
a single type I error will lead to an unacceptably low detection
power for each test.

From the pioneering work of Benjamini and Hochberg
(1995), the FDR is the expected proportion of false-positive
findings among all rejected hypotheses. The FDR control
method aims to control the FDR instead of the type I error
rate. The FDR control method has much higher power when a
large number hypotheses are being tested. The more hypothe-
ses there are, the more significant the superiority of this method.
When none of the hypotheses is false, controlling the FDR is
equivalent to controlling the type I error rate.

Suppose that a multistage process involves a total of N
stages. No stages remain in control while Ny =N — Np stages
go out of control. Table 1 shows the possible outcomes of the
multiple hypotheses testing. A false discovery, as defined by
Benjamini and Hochberg (1995), is an in-control stage that is

incorrectly identified as a faulty stage. Suppose that the number
of false discoveries is B and that the total number of the stages
that are identified as faulty stages is R. Then the FDR is defined
as

FDR=E(§ |R>O) Pr(R > 0), D

the proportion of the false discoveries among all discoveries.

Average power is used extensively in statistics to evaluate
the detection capability of multiple hypotheses testing methods.
Average power is defined as

Average power =E (I_VE) Pr(N; > 0), (8
1

where F is the number of faulty stages identified correctly. Mar-

shall et al. (2004) and others call average power the successful

detection rate (SDR). Obviously, a desirable multiple hypothe-

ses testing method requires both a low FDR and high average

power.

Benjamini and Hochberg (1995) proposed a simple linear
step-up procedure aimed at controlling the FDR at a prespeci-
fied level, o, while maximizing the number of rejected hypothe-
ses. For m independent tests, Hy, Ha, ..., Hpy, letp1,p2, ..., Pm
be their p-values. The simple linear step-up procedure is as fol-
lows:

1. Rank the p-values in ascending order, p(1) <p@) <--- <
P(m)-

2. l=max{j:pg <ja/m, 1 <j<m}.

3. If I > 0, then reject all the hypotheses associated with
Py, - - - » P@y. Otherwise, do not reject any hypotheses.

Benjamini and Hochberg (1995) proved that this simple lin-
ear step-up procedure guarantees

E(FDR) < o <a,
m

where my is the number of true null hypotheses. When all of
the null hypotheses are true, namely mgy = m, the simple linear
step-up method can strictly control the FDR at level «. If some
alternative hypotheses are true, then the simple linear step-up
method may be somewhat conservative; however, if the value

Table 1. Possible outcomes of multiple hypotheses testing

Identified as Identified as
in-control stages faulty stages Total
In-control stages A B No
Faulty stages E F N
Total M R N
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of my is available, we can still strictly control the FDR ex-
actly at o, which can lead to a higher average power. To further
improve the power of the simple linear step-up method, Ben-
jamini, Krieger, and Yekutieli (2006) incorporated the adaptive
estimation of my into a two-stage linear step-up procedure, as
follows: .

1. Use the linear step-up procedure at level o’ = a/(1 + a).
Let r; be the number of rejected hypotheses. If rj =0
does not reject any hypothesis, stop; if r| = m rejects all
m hypotheses, stop.

2. Letmg=m—ry.

3. Use the linear step-up procedure with o* = a'm/my.

Obviously, the closer the ratio, mg/m, is to 0, the more signifi-
cant the increase in average power.

Benjamini and Hochberg (1995) and Benjamini, Krieger, and
Yekutieli (2006) proved that when all m tests are independent,
the simple and two-stage linear step-up procedures can guaran-
tee FDR control. Otherwise, as Benjamini and Yekutieli (2001)
showed, despite the dependent structure of the hypotheses, the
simple linear step-up procedure conducted with o/ Z;’;l 1/iin
place of « can still control FDR at a level less than or equal to
moa/m.

Because FDR control guarantees a higher average power, in
what follows we discuss how to implement FDR control in mul-
tistage process monitoring and diagnosis.

5. THE FALSE DISCOVERY RATE-ADJUSTED
SHEWHART CHART

To apply the FDR control method to multistage process mon-
itoring and diagnosis, we first consider an FDR-adjusted She-
whart chart (Shewhart 1931) based on the two-stage linear step-
up procedure. We do this because the Shewhart chart is among
the most popular control schemes for process monitoring. Sup-
pose that there are N stages in a multistage process that can
be described by a state-space model as in (3), and that all of
the parameters in the model are assumed to be known. Let e ;
denote the standardized one-step-ahead forecast error of stage
n of product j, then {e,j,n=1,2,...,N} is iid random noise
that follows N(u,, 1). Note that when the process is in control,
n=0.

To test the hypotheses as in (6), we establish multiple con-
trol charts based on FDR control methods. Alternatively, we
also construct multiple control charts based on the conventional
type I error rate control method for benchmarking.

Because the standardized one-step-ahead forecast errors fol-
low standard normal distributions when the process is in con-
trol, the p-value of the control statistics of each control chart
can be readily calculated as

Pnj=2(1 = ®(enyD). &)

where @ is the distribution function of the standard normal dis-
tribution.

The FDR-adjusted Shewhart chart can be easily established
given the p-values of each stage and the independence be-
tween e, ;. Suppose that {p(;)j,n=1,..., N} are the p-values

n=1,...,N,
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in ascending order and that the signaling time of the FDR-
adjusted Shewhart chart, T, is

l=max{n:p(n)J5na/N, 1 SnsN},
(10)
T=inf{j:l1>1}.

Suppose that the FDR-adjusted Shewhart chart gives an
alarm at product J. All of the stages associated with p(1y, 4, ...,
pq).s are viewed as faulty stages. The step-by-step procedure
for using an FDR-adjusted Shewhart chart is as follows:

1. Model a multistage process with N stages by a state-space
model as in (3), assuming that all of the parameters in the
model are known. :

2. Choose the in-control average run length (ARL) of the
FDR-adjusted Shewhart chart, ARLy. The value of « can
be determined later.

3. For product j, calculate the standardized one-step-ahead
forecast error of each stage, 1 j, €2, ..., enj, by (5).

4. Calculate p(1) j, - . ., P(V),j» the ascending ordered p-values
ofelJ,ez,j, <y €Ny by (9)

5. Find the largest / using the two-stage linear step-up pro-
cedure because of the independency of ey j, 2, ..., €N j.

6. If I > 0, the process is determined to be out of control.
Those stages associated with pq)j, ..., P, are identi-
fied as faulty stages. Otherwise, continue to sample. For
product j + 1, reiterate steps 3-6.

Alternatively, conventional multiple Shewhart charts based
on type I error rate control can be established, for which the
signaling time, T}, is

an

where h is the control limit that can be determined by the overall
type I error rate. The stages with |e,j| > h are diagnosed as
faulty stages. The step-by-step procedure for constructing the
multiple Shewhart charts is as follows:

Ty, = inf{j, lenjl > b, n=1,2,...,N},

1. Model a multistage process with N stages by a state-space
model as in (3), assuming that all of the parameters in the
model are known.

2. Choose the in-control ARL of the multiple Shewhart
charts, ARLg; the value of h can be determined later.

3. For product j, calculate the standardized one-step-ahead
forecast error of each stage, ey j, €2, ..., en, by (3).

4. If any |esjl = h,n=1,2,...,N, the process is deter-
mined to be out of control. Those stages with |e, ;| larger
than or equal to h are identified as faulty stages. Oth-
erwise, continue to sample. For product j + 1, reiterate
steps 34.

In he next section, we provide numerical comparisons be-
tween the FDR-adjusted Shewhart chart and the multiple She-
whart charts.

5.1 Fault Identification Performance Evaluation

In this section we compare the performance of the mul-
tiple Shewhart charts based on type I error rate control and
the FDR-adjusted Shewhart chart. Suppose that a multistage
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Table 2. Comparison of the FDR-adjusted Shewhart chart and the multiple Shewhart charts. Equal mean shift magnitude. N = 30, in-control

ARL =700. Values in parentheses are for the multiple Shewhart charts

Number of out-of-control stages

1 3 6

8 ARL Power (%) FDR (%) ARL Power (%) FDR (%) ARL Power (%) FDR (%)

0.50 671 (671) 6.7 (6.7) 0.12 (0.12) 582 (582) 7.8(1.8) 0.13 (0.13) 464 (465) 7.6 (1.6) 0.12 (0.12)
1.00 591 (590) 176 (17.5) 0.12(0.12) 310 (310) 19.5(19.5) 0.13(0.13) 160 (160) 13.5(13.4) 0.12(0.12)
1.50 420 (419) 40.5(404)  0.13(0.13) 107 (107) 28.5(284) 0.14(0.14) 42.1(422) 16.1(159) 0.13(0.13)
2.00 242 (242) 62.5(61.5) 0.16(0.16) 345(346) 322(31.8) 0.16(0.15 11.8(11.9) 17.7(16.9) 0.18(0.17)
3.00 599(59.9) 88.7(88.6) 0.25(0.20) 51(5.2) 36.6(34.8) 0.26 (0.23) 20221 253(21.2) 0.19(0.23)
400 154(154) 97.0096.7) 0.49(0.22) 1L.7(1.7) 454 (41.3)  0.55(0.46) 1.0(1.1) 48.4(37.8) 0.56 (0.30)
5.00 54(5.4) 98.6 (98.5)  0.90 (0.35) 1.1(L.D) 62.0(55.9) 0.98 (0.60) 1.0 (1.0) 77.3(66.2) 0.97(0.37)

process involves N = 30 operation stages. Assume that the cor-
relation among the process stages can be described by a sim-
ple state-space model with identity constants, A, and C,, in
(3). (We discuss the effect of process parameters A, and C,
in the next section.) The other parameters in the state-space
model are o, = 1, 0, = 1, and, for the initial state, ap =0
andz =1.

The in-control ARL of the two types of Shewhart charts is
fixed at 700. Two types of out-of-control scenarios are consid-
ered. In the first scenario, all of the faulty stages experience
mean shifts of the same magnitude. One, 3, or 6 out of 30 stages
in the process are randomly chosen as faulty stages. The com-
mon mean shifts in the faulty stages considered are 0.5, 1.0, 1.5,
2.0, 3.0, 4.0, and 5.0. As for the second scenario, 3 or 6 out of
30 stages are randomly chosen to be out-of-control stages. The
faulty stages are grouped into three groups of equal size. In cat-
egory I, mean shift magnitudes of the three groups of faulty
stages are 0.5, 1.0, and 1.5. In category II, these mean shift
magnitudes are 0.5, 1.5, and 2.5, and in category III, they vary
in an even wider range, 0.5, 2.0, and 3.5.

Tables 2 and 3 compare the two scenarios in terms of out-of-
control ARL, average power, and FDR. Values corresponding
to the multiple Shewhart charts are given in parentheses. The
results were obtained from 1,000,000 Monte Carlo simulation
runs. As shown in these two tables, the out-of-control ARLs
of the two types of charts are approximately the same. Both
have an FDR of <1%, which is quite satisfactory. In Table 2,
when the number of faulty stages is only one, the two meth-
ods perform similarly. Both methods also have quite satisfac-
tory average power; for example, when 8 = 4.0, the probability
of correctly identifying the out-of-control stage exceeds 96%.

But the average power of both methods decreases as the num-
ber of faulty stages increases; for instance, when the first three
stages go out of control and § is 4.0, the average power of the
FDR-adjusted Shewhart chart drops from 100% to 45%, and the
performance of the multiple Shewhart charts deteriorates more
seriously, to 41%. When the number of faulty stages increases
to six, the average power of the FDR-adjusted Shewhart chart is
48%, whereas that of the multiple Shewhart charts is only 38%.
For mean shifts < 2.0, the two methods have similar average
power.

In Table 3, due to the inequality of the mean shift magni-
tude, the average power of both methods seriously deteriorates.
The underlying reason is that rapid detection of large mean
shifts hinders the detection of smaller mean shifts. But when
the number of faulty stages is large, the average power of the
FDR-adjusted Shewhart chart still exceeds that of the multiple
Shewhart charts; for instance, when the first six stages go out of
control with category III mean shifts, the average power of the
FDR-adjusted Shewhart chart is about 34%, whereas that of the
multiple Shewhart charts is about 27%.

The numerical results are influenced only slightly for other
possible choices of faulty stages; however, the FDR-adjusted
Shewhart chart always maintains its superiority.

In summary, the FDR-adjusted Shewhart chart has higher av-
erage power than the multiple Shewhart charts under two out-
of-control scenarios. We next discuss other FDR-adjusted con-
trol charts that could further improve the performance of the
FDR-adjusted Shewhart chart.

5.2 The Effect of Process Parameters Aand C

In this section we exlore the effect of the process parameters
(An, Cy) on the performance of the multiple Shewhart charts

Table 3. Comparison of the FDR-adjusted Shewhart chart and the multiple Shewhart charts. Varying mean shift magnitude. N = 30, in-control
ARL =1700. Values in parentheses are for the multiple Shewhart charts

Number of out-of-control stages

3 6
é ARL Power (%) FDR (%) ARL Power (%) FDR (%)
Category I 106.4 (106.5) 29.49 (29.32) 0.12 (0.11) 41.8 (42.0) 16.05 (15.78) 0.15 (0.15)
Category II 12.4 (12.5) 34.64 (33.72) 0.11 (0.11) 4344 20.07 (18.32) 0.18 (0.16)
Category III 2727 40.60 (37.69) 0.10 (0.07) 1.3(1.3) 33.89 (27.01) 0.35 (0.22)
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Figure 2. Average power of the FDR-adjusted Shewhart chart (solid lines with solid circles) and the multiple Shewhart charts (dashed
lines with empty circles) with varying process parameters, A, and C,,. The mean shifts of the different stages are equal. (a) Number of faulty
stages = 1. (b) Number of faulty stages = 3. (c) Number of faulty stages = 6.

based on FDR control and type I error rate control. Suppose  when the first one, three, or six stages in the process are faulty
that there are N = 30 stages in a multistage process and that the stages with equal shifts in magnitude. Figure 3 depicts the av-
in-control ARL is also fixed at 700. The values of A, and C, are  erage power of the two methods with varying mean shifts. The
assumed to be known and to vary from 0.8 to 1.0 and 1.2. Other  simulation results also demonstrate that both methods nearly
parameters in the state-space model are kept constant, o, = 1, have the same FDR and out-of-control ARL regardless of the
0w, =1,a0=0,and T = 1. variation in A, and C,.

Comparisons of the the FDR-adjusted Shewhart chart and the In Figure 2, when only the first stage of the process goes
multiple Shewhart charts are shown graphically in Figures 2 out of control, the average power of the two control schemes
and 3. Figure 2 illustrates the average power of the two methods  is quite close. The superiority of the FDR-adjusted Shewhart
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Figure 2. (Continued.)

chart becomes more obvious when the number of faulty stages
increases. For instance, when the first six stages experience a
mean shift of magnitude five, the average power of the FDR-
adjusted Shewhart chart exceeds that of the multiple Shewhart
charts by approximately 10%.

Panels (a)(c) in Figure 3 show that when the difference be-
tween the varying mean shifts is small, say 0.5, the superior-
ity of the FDR-adjusted Shewhart chart is marginal. As the

difference between mean shifts increases, the average power
of the FDR-adjusted Shewhart chart becomes more obvious;
for example, when category III mean shifts occur in the first
six stages, the average power of the FDR-adjusted Shewhart
chart is about 5% higher than that of the multiple Shewhart
charts.

In summary, when A, and C, vary within a certain range,
the FDR-adjusted Shewhart chart and the multiple Shewhart
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Figure 3. Average power of the FDR-adjusted Shewhart chart (solid dots) and the multiple Shewhart charts (circles) with varying process
parameters, A, and Cy, and varying mean shifts. (a) Category I mean shifts. (b) Category II mean shifts. (c) Category III mean shifts.
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Figure 3. (Continued.)

charts have nearly the same average power; however, the FDR-
adjusted Shewhart chart is always superior.

6. FALSE DISCOVERY RATE-ADJUSTED
CUSUM CHART

Along with Shewhart-type charts, the CUSUM chart is pop-
ular and has proven optimal properties for a given size of mean
shift (Bagshaw and Johnson 1975). It is well known that the
Shewhart-type charts are generally good at detecting large mean

TECHNOMETRICS, MAY 2009, VOL. 51, NO. 2

shifts, whereas the CUSUM chart is more proficient in detect-
ing small but persistent mean shifts. Hawkins (1991, 1993) sug-
gested using the CUSUM chart for each variable in a cascading
process, such as a multistage process. In this section we inves-
tigate applying muitiple CUSUM charts based on FDR control
to a multistage process for fault identification.

Suppose that the total number of stages in a multistage
process is N. Let e, ; be the standardized one-step-ahead fore-
cast error of the nth stage of product j, which is random noise
from a standard normal distribution if the process is in control.
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To detect a change as in (4), we establish a two-sided CUSUM
chart on e, ; for each stage. The two-sided CUSUM chart for
the nth stage for product j is defined as follows:

Sy;=max{0,S¥, | +enj—kl,

S, =max{0,S,,_, —enj—k},

12)

where k > 0 is the reference value. For large values of S,T J the
CUSUM statistic can be rewritten as

Sy =Si—1+enj—k. (13)
Similarly, S, jcan be simplified as
s,t:s,fd.u,-e,,d--k. (14)

Each stage in a multistage process has two control statistics.
S;:' J is used to detect positive mean shifts, whereas S ¥ is used
to detect negative mean shifts. When the process is in eontrol,
S;:' ¥ and S, ; share the same distribution function, W.

Once the distribution function, W, is obtained, the p-values of
the CUSUM statistics of the jth product at the nth stage, p;:, =
1—W(S; ) and p; =1 — (S, ), can be calculated. Because
there are N stages in the process, we have a total of N pairs of
p-values. Based on these p-values, the FDR-adjusted CUSUM
chart can be established as follows:

1. Model a multistage process with N stages with a state-
space model as in (3), assuming that all of the parameters
in the model are known.

2. Choose the in-control ARL of the FDR-adjusted CUSUM
chart, ARLy. The value of the FDR, «, can be determined

later.
3. For product j, calculate the standardized one-step-ahead
forecast error of each stage, ey j, €2, ..., enj by (5).

4, Establish a two-sided CUSUM chart with reference value
k for each stage; calculate Si"J, S;J, 1) SZ_J, vees S;J,
S;,J, based on (12).

5. Calculate {p;; and p;, n=1,2,..., N}, the p-values of

S:'J and S, ;.
6. Order the p-values ;:,- andp;J,n =1,2,...,N} as
P(1), P, - - -» P2N) in ascending order.

7. Find the largest / by using the simple linear step-up pro-
cedure. a/ 32N, 1 is used in place of a..

8. If I > 0, the process is determined to be out of control. All
of the stages associated with {p(,;,n=1,2,...,1} are
diagnosed as faulty stages. Otherwise, continue to sample.

For product j + 1, reiterate steps 3-8.

In contrast, the stopping time of the conventional multiple
CUSUM charts, T}, given reference value k and control limit A,
is calculated as

T, (k) =inf(j:S}; > h,n=1,2,...,N},

T,:(k):inf{j:S;th,n=1,2,...,N}, (15)
Th(k) = min(T;¥ (k), T, (k).

The multiple CUSUM charts are implemented as follows:

1. Model a multistage process with N stages with a state-
space model as in (3), assuming that all of the parameters
in the model are known.

185

2. Choose the in-control ARL of the multiple CUSUM
charts, ARLy. The value of control limit, 4, can be de-
termined later.

3. For product j, calculate the standardized one-step-ahead
forecast error of each stage, e} j, 2, ..., en,j by (5).

4. Establish a two-sided CUSUM chart with reference value
k for each stage; calculate STJ, S;_j, STJ., SZ'J., ces S,“;
S;J-, based on (12).

5. For each stage, check whether st >horS, J > h; if yes,
then such stages are diagnosed as faulty stages and the
process is considered out of control. Otherwise, continue
to sample. For product j + 1, reiterate steps 3-5.

.j’

A critical step in applying the FDR control method to the
CUSUM chart step is to calculate the p-values of the CUSUM
control statistics, S j and S; ;. Here we provide three meth-

ods for approximating Pr(S,‘l" j = x) and Pr(S; ; > x). The first
method is based on Markov chain theory, whereas the other two
methods are based on Brownian motion with drift. Because S r
and §; ; share the same distribution when the process is in con-

trol, we use S::,' for explanatory purposes.

6.1 Approximation Based on Markov Chain Theory

When a multistage process is well under control, the stan-
dardized one-step-ahead forecast errors of all of the stages are
iid as a standard normal distribution. Therefore, the CUSUM
charts based on the residuals of different stages also are iid.
Thus we need only study the distribution of the control statis-
tics of one typical stage, n, in the process.

It has been widely accepted that the ARL of the CUSUM
chart can be calculated by the Markov chain method (Brook
and Evans 1972). Likewise, the Markov chain method also can
be used to approximate the limiting distribution of the CUSUM
statistics. The control statistics of the CUSUM chart, S}, and
S, j» can be viewed as discrete-time Markov chains whose state
spaces contain all of the nonnegative real numbers. The fu-

ture state, S:' 1 given the past states, S:'J_l, ceny S;":O, and the
present state, S,T i is independent of the past states and depends

only on the present state, as does S, S

We describe the approximation method based on Markov
chain theory in detail in Appendix A. In brief, suppose that
the state space of S,',* j can be discretized into r + 1 subinter-
vals, {Ep, E1, ..., E;}. Then the limiting distribution of the dis-
cretized Markov chain with finite states, {m;,i =0,1,...,r},
can be calculated, where m; is the probability that S,*,’ J falls
into subinterval E;. As r increases, the length of each subin-
terval decreases, and the limiting distribution of the discretized
Markov chain moves closer to the true limiting distribution of

S:J. When r is large enough, the p-value of the CUSUM statis-

tic can be computed. Obviously, Pr(S, ; > 0) = 1. For x > 0,

Pr(S,TJZx)=Zr:m,

a={l:xeE,I=0,1,...,r}.

The p-values of the CUSUM statistics can be approximated
based on the foregoing formula.

(16)
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6.2 Approximation Based on Brownian Motion Theory

An easier alternative method for approximating the p-values
is based on the theory of Brownian motion with drift. Because
the standardized one-step-ahead forecast error, e, j, of a typi-
cal stage, n, of a multistage process follows a standard normal
distribution, e,,; — k,€n2 — Kk, ..., e, — k are independently
identically and normally distributed with E(e,; — k) < oc.
When the value of the CUSUM statistics is very large, the for-
mula for calculating the CUSUM statistics can be simplified as
S:'J = S,:'J_l +enj — k. Then {S,TJ} can be viewed as Brownian
motion with a drift coefficient —k (Ross 1996).

Suppose that X(¢) is Brownian motion with drift x. Based
on the theory of Brownian motion, provided that A, B > 0, the
probability that the process hits A before —B when the process
starts at x (—B < x < A) is

£21B _ 2ux
e2uB _ g—2uA"

Suppose that the Brownian motion with drift starts with 0. Then
the foregoing probability can be simplified as

8 — |
e2uB _ g—2uA”

Provided that 1 < 0 and letting B approach infinity, we can ob-
tain

Pr(X(z) hits A before —B|X(0) =x) ~ (17

Pr(X(#) hits A before —B|X(0) = 0) ~ (18)

Pr(X(¢) hits A|X(0) = 0) ~ 24, (19)

Because the drift coefficient of S,T f is —k < 0, using the the-
ory of Brownian motion, the probability Pr(.S',,+ iz X) can be ap-
proximated by

Pr(S}H; > xS} =0) ~ e forx>0.

(20)

Although the foregoing approximation is simple enough, it
may not be used directly. Because the CUSUM chart is actually
a discrete time Markov chain while Brownian motion evolves
continuously, there is a discrepancy between the actual value of
the p-value of the CUSUM statistic and the approximate value
as in (20). To compensate for the discrepancy, Siegmund (1985)
provided a revised approximation of expression (20) that gives
greater accuracy. Here we use Siegmund’s result with some
modification to get a better approximation of the p-value of the
CUSUM statistic. The corrected approximation of the p-value
of the CUSUM statistic (hereinafter referred to as the corrected
Brownian motion method) is as follows:

Pr(S}; > x) ~ e &0 for x> 0, 21

where p is a constant that equals 0.583. The derivation of (21)
is presented in Appendix B.

6.3 Evaluation of Different Approximation Methods

So far, we have described three methods of approximating
the p-values of the CUSUM statistics: one method based on
Markov chain theory and two methods based on Brownian mo-
tion models. To evaluate these three methods, we use the em-
pirical distribution of the CUSUM statistics as a benchmark.
We assume that a CUSUM chart reaches its steady state after
10,000 observations; therefore, the 10,001st CUSUM statistic
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is collected. A total of 1 million such CUSUM statistics are
collected to get the empirical distribution.

Figure 4 shows the p-values of the CUSUM chart with refer-
ence value 0.5 obtained using the three approximation methods
and the empirical distribution. The approximate values based on
the corrected Brownian motion method and the Markov chain
method are much closer to the values obtained by the empirical
distribution. As the value of the CUSUM statistic increases, the
p-values obtained by four methods gradually converge.

To quantitatively evaluate the three approximation methods,
M equally spaced points are drawn from the state space of the
CUSUM statistic. The p-value obtained via the empirical dis-
tribution at point i is designated pf , and the p-values approxi-

mated are designated p‘?” P. The mean squared error (MSE) of
the approximation method, defined as

M
MSE gy, = 1%4 > @F - pfPy?, (22)
i=1
is used as a metric. For example, the MSE of the aj ximation
based on Markov chain theory is 3 M, ®F —p¥)?, where pM
is the p-value obtained by the Markov chain method at point i.
Obviously, the smaller the MSE, the better the approximation
method.

For the CUSUM chart with reference value 0.5, the MSE of
the approximate p-values obtained from the three methods are
3 x 1077 for the Markov chain method, 8 x 10~2 for the Brown-
ian motion method, and 8 x 10~ for the corrected Brownian
motion method. To save space, the MSEs for CUSUM charts
with different reference values are not shown. Comparing the
MSEs shows that the approximation method based on Markov
chain theory has the greatest accuracy. But this method is also
more computationally demanding and may not be feasible in
practice. In the next section we present a performance compari-
son of the FDR-adjusted CUSUM chart based on three types of
approximation methods demonstrating that the FDR-adjusted
CUSUM chart is actually quite robust to approximation errors.

6.4 Fault Identification Performance Evaluation

Tables 4-9 compare the muitiple CUSUM charts based on
FDR control and type I error rate control in terms of out-of-
control ARL, average power, and FDR. The results were ob-
tained through 1 million Monte Carlo simulation runs. Here
k = 0.5 for demonstration purposes. The common in-control
ARL is 700, and the number of stages, N, is 30. To save space,
the tables do not provide the simulation results for other choices
of N. The process parameters of the state-space model are the
same as those reported in Section 5.2.

From Tables 4-9, we can see that although the three types of
approximation methods vary, the FDR-adjusted CUSUM chart
is quite robust to the approximation methods; that is, the FDR-
adjusted CUSUM chart based on the three approximation meth-
ods has nearly the same performance. Therefore, if computa-
tional effort is a concern, then the corrected Brownian motion
method is recommended.

Similar to the results shown in Tables 2 and 3, the out-of-
control ARLs of multiple CUSUM charts and the FDR-adjusted
CUSUM chart remain nearly the same. The FDRs are all under
good control.

Comparing Tables 2 and 3 and Tables 4-9, the average power
is significantly improved in the latter, because the CUSUM
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Figure 4. Comparison of methods for approximating the p-values of the CUSUM statistics (k = 0.5). (a) An overview. (b) Enlarged view of
the right end.

Table 4. Comparison of the multiple CUSUM charts and the FDR-adjusted CUSUM chart (Markov chain method). The mean shift magnitudes
are equal. N =30, ARLy = 700, = 0.0168, h = 8.77. Values in parentheses are for the multiple CUSUM charts

Number of out-of-control stages

1 3 6
8 ARL Power (%) FDR (%) ARL Power (%) FDR (%) ARL Power (%) FDR (%)
05 293.0(2929) 57.1(57.0) 0.15(0.15) 66.1(66.1) 31.2(30.6) 0.13(0.13) 34.7(34.7) 17.2(164) 0.09 (0.09)
1.0 45.9 (45.9) 93.5(93.3) 0.15(0.15) 15.3(153) 36.7(343) 0.09(0.08) 11.0(11.0) 22.1(18.5) 0.04 (0.04)
1.5 19.4 (19.4) 97.7(974) 0.15(0.14) 87@8.7) 41.1(36.6) 0.07 (0.05) 6.7 (6.8) 27.4(209) 0.03 (0.01)
20 12.1 (12.1) 98.6 (98.5) 0.15(0.14) 6.1(6.2) 44.4(39.2) 0.03(0.02) 5.0(5.0) 339(24.7) 0.02(0.01
30 7.0(7.0) 99.7(99.5) 0.12(0.10) 4.0 (4.0) 51.8(45.1) 0.03(0.02) 33(34) 46.0(33.3) 0.02 (0.00)
- 4.0 49 (4.9) 99.9(99.8) . 0.11(0.07) 3.03.0 58.4(51.0) 0.04 (0.01) 2.6 (2.7) 61.5(48.2) 0.03(0.01)
5.0 3939 100(99.9)  0.09 (0.05) 24 (2.5) 62.0(55.1) 0.08 (0.01) 2.02.0) 644 (41.5) 0.02(0.00)
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Table 5. Comparison of the multiple CUSUM charts and the FDR-adjusted CUSUM chart (Brownian motion method). The mean shift
magnitudes are equal. N =30, ARLy = 700, a = 0.044, h = 8.77. Values in parentheses are for the multiple CUSUM charts

Number of out-of-control stages
1 3 6
é ARL Power (%) FDR (%) ARL Power (%) FDR (%) ARL Power (%) FDR (%)

05 2925(293.3) 57.1(57.1) 0.15(0.15) 653(654) 315@307) 0.13(0.13) 346347 17.7(164) 0.10(0.09)
1.0 46.4 (46.4) 93.2(929) 0.16(0.16) 152(152) 37.8(343) 0.11(0.10) 11.0(11.1) 23.6(18.6) 0.05(0.04)
1.5 19.5 (19.5) 97.5(97.1)  0.17(0.16) 8.6(8.7) ~ 423(36.6) 0.08 (0.06) 6.7 (6.8) 29.7(21.0)  0.04 (0.03)
20 122 (12.2) 98.8(98.5) 0.16(0.13) 6.1(6.2) 46.2(39.1)  0.05(0.03) 49(5.0) 36.6 (24.5)  0.02(0.01)
30 7.0(7.0) 99.7(99.6) 0.14(0.10) 3.94.0) 53.8(44.9) 0.06 (0.02) 33(3.4) 49.5(32.8)  0.02 (0.00)
4.0 49 4.9) 99.9(99.8) 0.12(0.07) 3.0(3.0) 61.2 (51.1) 0.06 (0.01) 2627 63.6 (48.7)  0.05 (0.00)
50 3939 100 (99.9)  0.14(0.07) 24(24) 63.1(54.6) 0.08 (0.01) 200 70.3(41.7)  0.02 (0.00)

Table 6. Comparison of the multiple CUSUM charts and the FDR-adjusted CUSUM chart (Corrected Brownian motion method). The mean
shift magnitudes are equal. N = 30, ARLy = 700, « = 0.025, h = 8.77. Values in parentheses are for the multiple CUSUM charts

Number of out-of-control stages
1 3 6
) ARL Power (%) FDR (%) ARL Power (%) FDR (%) ARL Power (%) FDR (%)

05 2927(2929) 573(57.1) 0.15(0.15) 66.3(663) 314(306) 0.13(0.13) 346347 17.6(164) 0.09(0.09)
1.0 46.1 (46.1) 926(923) 0.18(0.17) 152(152) 379(343) 0.11(0.09) 109(11.0) 23.8(18.6) 0.06(0.04)
1.5 19.5 (19.5) 97.3(97.1) 0.17 (0.16) 8.7(8.7) 42.5(36.8) 0.07 (0.05) 6.7 (6.8) 29921.2) 0.03 (0.01)
20 12.1 (12.1) 98.7 (98.5) 0.16(0.14) 6.1 (6.1) 46.4 (39.0)  0.07 (0.04) 4.9 (5.0) 36.8(24.7)  0.03 (0.01)
30 6.9 (6.9) 99.6 (99.5) 0.14(0.10) 3.9 4.0 53.6 (44.7)  0.05(0.02) 333.4) 49.7 (32.9)  0.03 (0.00)
4.0 49 4.9) 99.9(99.8) 0.12(0.07) 3.03.0) 61.1(50.8) 0.06 (0.01) 2.6 (2.7) 62.9 (48.1)  0.06 (0.00)
5.0 3939 99.9(99.9)  0.12(0.06) 2424) 63.6 (54.6)  0.09 (0.01) 2.02.0) 70.2 (41.6)  0.02 (0.00)

Table 7. Comparison of the multiple CUSUM charts and the FDR-adjusted CUSUM chart (Markov chain method). The mean shift magnitudes
vary. N =30, ARLy =700, « =0.0168, h = 8.77. Values in parentheses are for the multiple CUSUM charts

Number of out-of-control stages

3 6
é ARL Power (%) FDR (%) ARL Power (%) FDR (%)
Category I 8.63 (8.67) 40.69 (36.62) 0.06 (0.05) 6.71 (6.76) 27.30 (21.02) 0.03 (0.02)
Category II 4.79 (4.81) 4797 (41.41) 0.05 (0.02) 3.96 (4.01) 40.86 (28.75) 0.02 (0.00)
Category III 3.39(3.41) 54.72 (47.62) 0.04 (0.01) 2.93 (2.96) 56.78 (38.73) 0.02 (0.00)

Table 8. Comparison of the multiple CUSUM charts and the FDR-adjusted CUSUM chart (Brownian motion method). The mean shift
magnitudes vary. N = 30, ARLy =700, a = 0.044, h = 8.77. Values in parentheses are for the multiple CUSUM charts

Number of out-of-control stages

3 6
8 ARL Power (%) FDR (%) ARL Power (%) FDR (%)
Category I 8.64 (8.69) 42.15 (36.48) 0.06 (0.04) 6.66 (6.76) 29.69 (21.12) 0.04 (0.02)
Category II 4.77 (4.81) 49.96 (41.49) 0.05 (0.01) 3.93 (4.00) 44.10 (28.54) 0.03 (0.01)
Category III 3.39(3.42) 57.26 (47.74) 0.06 (0.01) 2.92 (2.96) 61.65 (38.94) 0.04 (0.00)

Table 9. Comparison of the multiple CUSUM charts and the FDR-adjusted CUSUM chart (Corrected Brownian motion). The mean shift
magnitudes vary. N = 30, ARLg = 700, & = 0.025, h = 8.77. Values in parentheses are for the multiple CUSUM charts

Number of out-of-control stages

3 6
8 ARL Power (%) FDR (%) ARL Power (%) FDR (%)
Category I 8.63 (8.69) 42.14 (36.49) 0.08 (0.06) 6.67 (6.77) 30.02 (21.24) 0.03 (0.01)
Category II 477 (4.81) 50.25 (41.32) 0.07 (0.04) 3.93 (4.01) 44.42 (28.91) 0.03 (0.01)
Category Il 3.38 (3.41) 56.73 (47.49) 0.06 (0.01) 2.92 (2.95) 61.14 (38.89) 0.02 (0.00)
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chart is used of the Shewhart chart.

Table 6 gives the results for the FDR-adjusted CUSUM chart
based on the corrected Brownian motion method. When only
the first stage goes out of control, two types of CUSUM charts
have similar performance, and their fault identification capabil-
ity is quite satisfactory. For example, when the mean shift is 1.0,
the average power of both methods is as high as 93%. When the
number of faulty stages increases, the FDR-adjusted CUSUM
chart outperforms the multiple CUSUM charts, and the superi-
ority becomes even more obvious as the mean shift magnitude
increases. For instance, when the first three stages experience a
mean shift of magnitude four, the average power of the FDR-
adjusted CUSUM chart is 61%, compared with only 50% for
the multiple CUSUM charts. As the number of faulty stages
increases to six while the mean shift increases to five, the aver-
age power of the FDR-adjusted CUSUM chart remains as high
as 70%, whereas that of the multiple CUSUM charts is only
around 42%.

Tables 7, 8, and 9 compare the performance of the multi-
ple CUSUM charts and the FDR-adjusted CUSUM chart with
varying mean shift magnitudes. The superiority of the FDR-
adjusted CUSUM chart is still noticeable even in light of aver-
age power. This superiority becomes even more obvious as the
number of faulty stages and the difference in the mean shifts in-
crease; for example, for category II mean shifts, when the first
three stages go out of control, the average power of the FDR-
adjusted CUSUM chart is 50%, whereas that of the multiple
Shewhart charts is only 41%, and when the first six stages go
out of control and category III mean shifts occur, the average
power of the FDR-adjusted CUSUM chart is 61%, compared
with only 39% for the multiple CUSUM charts.

199

Allocation of faulty stages will affect the numerical results.
Nevertheless, the FDR-adjusted CUSUM chart always has a
clear advantage over the multiple CUSUM charts.

In summary, the FDR-adjusted CUSUM chart performs
much better than the multiple CUSUM charts, especially when
more than one stage goes out of control or the mean shifts of
different size occur simultaneously.

6.5 The Eftect of Process Parameters Aand C

Similar to Section 5.2, here we report the effect of the process
parameters (A,, Cy) on the performance of the FDR-adjusted
CUSUM chart and the multiple CUSUM charts. The value of
Ay is assumed to be known and to vary from 0.8 to 1.0 and 1.2,
as is the value of C,. All other parameters are set the same as in
Section 5.2.

Section 6.3 explains that the corrected Brownian motion
method not only has smaller MSE, but also is computationally
efficient. The comparison results given in Section 6.4 also show
that the FDR-adjusted CUSUM chart is quite robust to three dif-
ferent approximation methods; thus we give only the results for
the FDR-adjusted CUSUM chart based on the corrected Brown-
ian motion method.

Figures 5 and 6 graphically compare the average power of the
FDR-adjusted CUSUM chart and the multiple CUSUM charts.
Figure 5 shows the scenario in which the first one, three or six
stages in the process are faulty stages with equal shift magni-
tudes, and Figure 6 shows the case with varying mean shifts.

Similar to the results given in Section 5.2, Figures 5 and 6
show that if the values of (4,, C,) do not change significantly,
then the performance of the FDR-adjusted CUSUM chart and
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Figure 5. Average power of the FDR-adjusted CUSUM chart (solid lines with solid circles) and the multiple CUSUM charts (dashed lines
with empty circles) with varying process parameters, A, and Cy,. The mean shifts of different stages are equal. (a) Number of faulty stages = 1.

(b) Number of faulty stage = 3. (c) Number of faulty stage = 6.
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Mean shift magnitude

Figure S. (Continued.)
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the multiple CUSUM charts will not change significantly. In
Figure 5, we assume that the faulty stages share the same mean
shift magnitude. When only the first stage goes out of control,
the two control schemes perform quite similarly, but when more
than one stage goes out of control, regardless of the variation
in the process parameters, the superiority of the FDR-adjusted
CUSUM chart is quite obvious.

Figure 6 illustrates the varying mean shift scenario. We con-
sider the first three or six stages to be faulty stages that expe-

TECHNOMETRICS, MAY 2009, VOL. 51, NO. 2

rience category I, category II, or category Il mean shifts. For
category I mean shifts, when there are three faulty stages, the
average power of the FDR-adjusted CUSUM chart exceeds that
of the multiple CUSUM charts by an average of 6%, with six
faulty stages, this figure rises to 10%. The superiority of the
FDR-adjusted CUSUM chart is even more evident for category
II mean shifts, with average power exceeding that of the multi-
ple CUSUM charts by 10% for three faulty stages and by 15%
for six faulty stages. When the difference between the mean
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Figure 6. Average power of the FDR-adjusted CUSUM chart (solid dots) and the multiple CUSUM charts (circles) with varying process
parameters, A, and C, and varying mean shifts. (a) Category I mean shifts. (b) Category II mean shifts. (c) Category III mean shifts.

shifts is as large as 1.5, as in category III mean shifts, this supe-
riority increases to 10% and 20%, respectively.

7. MOTIVATING EXAMPLE REVISITED

Here we revisit the motivating example involving the trans-
mission of variation in a multistage automobile hood man-

ufacturing process (Lawless, MacKay, and Robinson 1999;
Agrawal, Lawless, and MacKay 1999) and use this example to
demonstrate the implementation of the FDR-adjusted control
schemes. Note that the process involves four stages: hanging,
painting, hardware, and finesse. More specifically, the flush-
ness of 19 car hoods at four measurement locations (left front,
right front, left rear, and right rear) is measured in each of the
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Figure 6. (Continued.)

four operational steps. For illustration, we focus on the mea-
surements collected from one of the four locations, the right
rear. The state-space model for this multistage process is given
in (2):
Yi=xi+v,
(23)

Xit1 = Bix; + wi, i=1,2,3,4.

As we can see, model (23) has the same form as model (3) with
Ai=p;,Ci=1.

We assume that o, = 0.1. Based on model (23), we simu-
late new observations, y;’s, for another m = 19 cars with the
same initial states described by Lawless, Mackay, and Robin-
son (1999). The first 10 cars are observed under normal con-
ditions, as described by model (23). We add a mean shift of
8 =3 to the second and third stages for the next nine cars. Use
of the FDR-adjusted CUSUM chart and the multiple CUSUM
charts are used to monitor the car hood manufacturing process
and identify the faulty stages is implemented as follows:

1. Given ARLy = 700 and N = 4, the FDR-adjusted CUSUM
chart and the multiple CUSUM charts with reference val-
ues k = 8/2 = 1.5 are constructed. Their control limits,
a =0.051 and & = 6.77, are obtained by simulation.

2. For product j, calculate the standardized one-step-ahead
forecast errors of the 19 cars based on model (23) by (5),
ferj.e2j.€35.€a5,j=1,2,...,19}L

3. Sazl)culate STJ, SI‘J., S;‘J, S;J, S;"J, S;J, S4+J, S;J. based on

4. For the multiple CUSUM charts, keep on sampling until
any S,T S or S, falls beyond h. The stages associated with

such S:’ jor S, jare diagnosed as faulty stages.

TECHNOMETRICS, MAY 2009, VOL. 51, NO. 2

5. For the FDR-adjusted CUSUM chart,
a) Calculate {p;:i and p;d-, n=1,2,3,4} by (21) for each
stage; these are the p-values of S,T J and S;J-.
b) Order the p-values {p};andp, ;,n = 1,2,3,4} as
Py, P)s - - - » P(8) in ascending order.
c) Calculate [=max{n:pgy) < 6{,’-"%, 1<n<8). If

I > 0, the process is determined to be out of con-
trol, and all of the stages associated with {p(), n =
1,2,...,1} are diagnosed as faulty stages. Otherwise,
continue to sample.

After 1 million Monte Carlo simulation runs, the average po-
wer of the FDR-adjusted CUSUM chart is approximately 67%,
5% higher than that of the multiple CUSUM charts. This exam-
ple further demonstrates that the FDR-adjusted CUSUM chart
is better at identifying faulty stages in a multistage process.

8. CONCLUSION

In this work, we have formulated multistage process moni-
toring and fault identification into a multiple hypotheses testing
problem. Based on a novel multiple hypotheses testing method,
the FDR control procedure and two multistage process control
and diagnosis schemes, the FDR-adjusted Shewhart chart and
CUSUM chart, were established. To apply FDR control proce-
dures, the distributions of the Shewhart and CUSUM control
statistics were investigated. In particular, three methods for ap-
proximating the distribution of the CUSUM statistic based on
Markov chain and Brownian motion theories were proposed.
Through Monte Carlo simulations, the newly proposed meth-
ods exhibited higher average power than the multiple Shewhart
and CUSUM charts. We also investigated the effect of process
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parameters in the state-space model on the new control and di-
agnosis schemes.

The introduction of FDR control in multistage process mon-
itoring and diagnosis opens up a potentially fruitful field for
future research. First, an exponentially weighted moving aver-
age chart (EWMA; Roberts 1959) based on FDR control could
be devised similarly. Likewise, whenever more than one qual-
ity characteristic needs to be monitored in each stage, FDR-
adjusted multiple EWMA charts (Lowry et al. 1992) and mul-
tiple CUSUM charts (Woodall and Ncube 1985) charts could
be established. Second, the properties of propagated shifts re-
quire further analysis, and their influence on the power of the
proposed methods remains to be investigated. In addition, the
uncertainty of the parameters may affect the performance of
the FDR-adjusted control schemes. Last but not least, for mul-
tistage processes that may be described by regression models
other than state-space models, the regression-adjusted chart and
cause-selecting chart complemented with FDR control are more
statistically appealing.

FDR control could be further extended beyond multistage
process monitoring and fault identification to multivariate qual-
ity control and signal interpretation. Whenever more than one
chart is used simultaneously (e.g., in controlling the mean
and/or variance of several variables), controlling the FDR,
rather than the type I error rate of the multiple charts, guar-
antees higher detection power as well.
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APPENDIX A: LIMITING DISTRIBUTION
OF CUSUM STATISTICS

In this article the limiting distribution of the one-sided
CUSUM statistic, 5] = max{0,S;" | + x; — k} with S =0,
is calculated by the Markov chain method. Here x; is as-
sumed to be a random observation from a normal distribu-
tion, X. The distribution of X is assumed to be standard nor-
mal when the process is in control. We represent the scheme
by a Markov chain having r + 1 states labeled Ey, Ey, ..., E,.
For the upper-sided CUSUM chart based on Sj+ , the inter-
vals are (—oo,w/2),[w/2,3w/2),...,[(n — 1/Q)w,(n +
1/2)w),...,[(r — 1/2)w, +00), where r + 1 is the number
of the states and @ = ¢/r, where c is a very large positive real
number that guarantees that the probability, Pr(S;” > ¢), is triv-
ial. The values in each interval that are used to represent the
states that are chosen to be 0, o, 2w, ..., and rw. The tran-
sition matrix, P = (p;j)(r+1)x(r+1), is determined only by the
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underlying process distribution of X. The transition probability
is defined as follows:

pio =Pr(E; = Ep) =Pr(X — k+ iw € (—oc, @ /2))
=Pr(X € (—oo, —im + w/2+k)),
pij =Pr(Ei - E))
=Pr(X —k+im € (jw — w /2, jo +/2))
= Pr(XG (-Do—-—w/24+k), (- + w/2+k)),
Dir =Pr(E; = E,)) =Pr(X —k+iw € (ro — @ /2, +00))
=Pr(X € ((r— ) — w /2 +k, +00)).

Let {n;,i =0,1,...,r} denote the limiting probability of
the Markov chain. m; can be viewed as the probability that
the Markov chain falls at state i. Because SJ+ forms an irre-

ducible aperiodic and positive recurrent Markov chain, S; has
a unique stationary distribution. Grounded in Markov chain the-
ory, {m;,i=0,1,...,r} can be computed as

,
n=nP, Zm‘=1»
i=0

where m = (7o, 1, ..., 7;). There are r + 2 equations in to-
tal. Based on the properties of transition matrix P, one of the
equations among the first » 4+ 1 equations is redundant. We can
arbitrarily delete one equation from the first r 4+ 1 equations,
then easily solve equation (24).

We use a Fortran program to get {n;,i=0,1,...,r}. We use
¢ =15 and divide the region (0, +00) into r+ 1 = 3,001 subin-
tervals. Based on r;, the p-value of the CUSUM statistic can be
calculated. For x > 0,

Pr(Sf 2 x) = zr:m,

i=a

a={l:xeE, 1=0,1,...,r}.

24

(25)

APPENDIX B: APPROXIMATED p-VALUES
OF CUSUM STATISTICS BASES ON
BROWNIAN MOTION THEORY

Suppose that X follows a standard normal distribution with
mean 0 and variance 1, x1, x2, ... are independent random ob-
servations drawn from X. also suppose that k > 0 and §; =
3 _ (i — k). Then E(X — k) = —k = po <.

Because X -k follows N(uo, 1), the density function of X — k
can be written as

_;_e—x2/2+uox-¢(uo), (26)
where ¥ (1) = u?/2.

Siegmund (1985) proved that if there exists ; > 0 such that
¥ (o) = ¥(u1), then, given —B < 0 < A, the probability that
§; hits A before hitting —B can be computed as

e—DA+p) __ o—AA+B+2p)

Pr,,,(S; hits A before —B) = YTy

@7
where A = i1 — uo, p =0.583.
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Obviously, we can slightly modify expression (27) and obtain
a useful result for our research. To make ¥ (119) = ¥ (11) hold,
w1 must be k. Then A = u; — o = 2k. Expression (27) can be
written as
e~ 2k(A+p) _ o—2k(A+B+2p)

(28)
Let B approach infinity. The probability that S; hits A can be
easily calculated as

P (Sj > A) = e KA+, (29)

[Received July 2006. Revised August 2008.]
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