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In-process sensors with huge sample size are becoming popular in the modern
manufacturing industry, due to the increasing complexity of processes and products
and the availability of advanced sensing technology. Under such a data-rich
environment, a sample with huge size usually violates the assumption of homogeneity
and degrades the detection performance of a conventional control chart. Instead of
charting summary statistics such as the mean and standard deviation of observations
that assume homogeneity within a sample, this paper proposes charting schemes
based on the quantile–quantile (Q–Q) plot and profile monitoring techniques to
improve the performance. Different monitoring schemes are studied based on various
shift patterns in a huge sample and compared via simulation. Guidelines are provided
for applying the proposed schemes to similar industrial applications in a data-rich
environment. Copyright c© 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Statistical process control (SPC) techniques evolved decades ago and are tailored to situations in which
measurement data are very limited. With modern measurement and inspection technology, it is not
uncommon to have hundreds of different process variables that are measured in huge sample sizes on

short time intervals. Few researchers really look into how to make use of such high-volume data for quality
control purpose. We propose to transform such a problem with huge sample size to a profile monitoring problem
and develop SPC techniques that make good use of the high-volume data.

In-process sensors with huge sample size have become commonplace in the modern manufacturing industry,
due to the increasing complexity of processes and products and availability of advanced sensing technology.
Sensors keep track of pressure, temperature, speed, color, humidity and any other variables that are appropriate
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to a particular process (Barry and Linoff1). For example, in automotive manufacturing the in-line Optical
Coordinate Measurement Machine (OCMM) measures 100–150 points on each major assembly with a 100%
sample rate. The OCMM, therefore, takes a tremendous amount of measurement data every 10–30 seconds
and efficient use of these data becomes a challenge. Another example is the machine vision system for mobile
phone display inspection, in which 5000 points on each display are measured at the rate of 10 seconds per
display board. The consequence of not fully utilizing such rich data in the manufacturing process is often
a ruined batch of product and a very costly shutdown and restarting of the process. Throughout this paper,
we will use the mobile phone display assembly and testing process as an example to demonstrate a proposed
SPC technique that is based on a profile monitoring method for such a data-rich environment.

The current practice of handling a situation with huge sample size is to apply a conventional SPC control chart
to the summary statistics of each sample such as sample mean or standard deviation. However, some serious
defects, such as a dark corner and a bad pixel cluster that are due to partial out-of-control data in a sample,
cannot be detected by a conventional charting method, as the out-of-control data would be averaged out and
buried in the huge sample.

To deal with such a unique problem with huge sample size, we suggest not monitoring the summary statistics
of the sample, but characterizing the sample by a quantile–quantile (Q–Q) plot. A linear profile that fits the Q–Q
plot of each sample would be monitored via a profile charting technique and the alarms of mean shifts, variance
shifts and distribution shifts of partial data in the sample are expected to be triggered efficiently and effectively.

In the next section, a real example from a mobile phone assembly and testing process is used to illustrate
the problem. Profile-related techniques, as a possible solution for the data-rich problem, are then reviewed.
Section 2 introduces methodologies related to Q–Q plots that would characterize a huge sample and transform
it to a linear profile for SPC application. Unique problems in Phase I and Phase II SPC developments with
huge sample sizes and their corresponding methods are investigated in subsequent sections. The run length
performances of the proposed methods are compared with different SPC monitoring schemes in Section 5.
Finally, Section 6 concludes this paper and gives prospective applications of the proposed approaches.

1.1. A motivating example

A example from a mobile phone assembly and testing process is used to illustrate the problem in a data-rich
environment. This is initiated by a leading electronics manufacturing services provider who aims to provide
ultra-modern manufacturing technology for high-volume products. Among its contract products, the cellular
phone is one for which there is a great demand for quality. In particular, the display component of the cellular
phone is the most critical quality part for the end user. The display component, including a liquid crystal display
(LCD), a driving board and other mechanical parts to support its movement, is assembled in one production
line. After several assembling stages, the display is mounted on the testing station for quality assurance.

Traditionally, the quality assurance relies on the visual checking of defects in a display, which is inaccurate
and labor intensive. These days, a machine vision system with image acquisition hardware and analysis software
can perform this repetitive job without fatigue. When a display is mounted on the testing station, the driving
circuits simulate a cellular phone to generate designed patterns on the display; image acquisition devices
working at high speed capture these patterns and transfer the images to a software system to analyze.

Figure 1 shows images of two cellular phone displays. That on the left is an eligible product, compared with a
defective product on the right. This display usually contains nearly 10 000 pixels and each can be lit individually.
It is not common for all pixels to malfunction, but patterns such as missing pixels, bad pixel clusters, dark corner,
etc., occur fairly often. These failures are all embodied by some local features that influence the uniformity of
luminance intensity. If we take the average of the luminance intensity of all pixels, the local failure features will
be averaged out by a huge sample size. This would lead to an inefficient reflection of such failures.

In this application, each display is independent of the others; each pixel in a display can be driven by the
circuits individually and is also independent of other pixels. Under the in-control status, the luminance of each
pixel follows a normal distribution with identical but unknown parameters. One display is thus a sample with
10 000 independent observations. However, the aforementioned defects make changes on the distribution of
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Figure 1. Sample images of the eligible and defective displays

Figure 2. Q–Q plot of regular and defective displays

partial pixels and violate the normality of the sample. A Q–Q plot (i.e. a normal plot) of the sample is expected
to observe these failures.

Figure 2 shows the Q–Q plots corresponding to the two displays shown in Figure 1. The differences in the
plots are obvious. In a latter part of this paper, a straight line fitted to the Q–Q plot will be monitored to alarm
the system to such failures.

1.2. Review of profile monitoring techniques

In many practical situations, the quality of a process or product is better characterized and summarized by the
relationship between a response variable and one or more explanatory variables; that is, a profile. It is assumed
that for each profile n (n > 1) values of the response variable (Y ) are measured along with the corresponding
values of one or more explanatory variables (X), which can be the time of operation, distance along a dimension
of an object, or a general variable to related to the profile (see Woodall et al.2). Thus, profile monitoring tries to
watch the relationship of the response variable and explanatory variables and draw conclusions about the quality
characteristics.

Profiles are both widely observed in real applications and studied in a broad area of the literature.
For example, a dissolution profile is a widely studied smoothing increasing curve in the pharmaceutical industry.
The explanatory variable is the time elapsed from the beginning of the experiment and the response is the
percentage of drugs dissolved up until the measuring epoch. Freitag3 introduced several empirical indices for
production line evaluation; most are developed based on experience rather than theoretical induction.

Walker and Wright4 measured the quality of a particleboard along its depth direction, which forms a convex
profile. The explanatory variable is the distance along the depth direction of the board and the response is the
corresponding density. An additive model was proposed to compare profiles from different boards and different
batches of boards. Conclusions can be drawn based on analysis of variance (ANOVA) analysis. The proposed
method is potentially useful for profile monitoring.
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A current–voltage (C–V) curve, which is formed by measuring the response variable current when applying
explanatory variable voltage on a capacitor, has been used as a fast and effective method in micro-electric
fabrication for quality control purposes for decades (see Walls et al.5 and Lin et al.6). Cai and Sah7 also
introduced an approach to monitor process-residue interface traps of metal-oxide semiconductor (MOS)
transistors after fabrication. By changing the gate voltage, the body current can be measured as an indication of
the interface traps, which again forms a profile.

A linear profile is a first-order function to characterize the relationship between a response variable
and explanatory variables. It is also the most widely observed class of profiles. Calibration processes are
often characterized by linear functions (Woodall et al.2). Most processes with aging effect are estimated
or approximated using a linear function for run-to-run control (see Buter and Stefani8). Many nonlinear
relationships can be transformed into linear relationships by proper variable transformation and substitution
(see Hastie et al.9).

However, there has been little research effort focused on how to efficiently monitor profiles. Several works of
research have started from the linear profile monitoring issues. Kang and Albin10 investigated a semiconductor
manufacturing process and monitored a simple linear profile. Since the data that fit the linear profile can be
characterized by a intercept, slope and residual, they proposed a method to treat the intercept and slope as two
correlated random variables and convert the situation to a general bivariate problem, Hotelling’s T 2 chart is
then used for this purpose. They also considered the fitted residuals as a measurement of dispersion of the data
from the line, and an exponentially weighted moving average residuals (EWMA-R) chart is used to monitor the
residuals.

Kim et al.11 transformed the original intercept and slope variables proposed by Kang and Albin10 to release
the correlation. Three EWMA charts are used to monitor the new uncorrelated intercept, slope and residual
simultaneously. More complex profiles are also being studied. Woodall et al.2 gave a broad review of the current
research branches and further topics that need more attention.

As motivated by the cellular phone display failures that are distinguished by the linear profile in the Q–Q
plot, we adopt and modify the existing linear profile monitoring techniques to fit the data-rich problem.

2. SPC USING THE Q–Q PLOT

The Q–Q plot is a graphical technique for determining whether two data sets come from populations with a
common distribution (see NIST/SEMATECH12). It is generated by plotting the quantiles of the first data set
against the quantiles of the second data set.

The Q–Q plot has long been a popular graphical technique for visually checking the distribution of a dataset
or comparing two datasets (see Chambers et al.13 and D’Agostino and Stephens14). Its power, however, has
been underemployed. The application of Kittlitz and Sullivan15 is a successful example in using a normal plot
to draw important findings.

If the second data set is fixed as reference, the Q–Q plot can compare the distributional differences between
many data sets by one-by-one comparison with the reference. If the reference data set and the compared data set
follow the same distribution, a linear trend will be observed; if not, versatile modality may be shown, depending
on the difference between the data sets.

The normal plot is a special case of the Q–Q plot, which assumes normal distribution of both data sets. As in
the example shown above, failures occurring in the display, such as abnormal dots or clusters, dark corners
or missing pixels, do violate the normality assumption of the sample and can be observed by the Q–Q plot.
These failure patterns that lead to partial mean shifts or variance changes, although not easily distinguished
from the sample mean, are expected to be alarmed by investigating and monitoring the Q–Q plot.

Many distributional aspects can be simultaneously tested by a Q–Q plot. For different distributions, the fitted
line to the Q–Q plot conveys different meanings. As tabulated by Chambers et al.13, for χ2 distributed data,
the intercept is always zero, while the slope estimates the cubic root of the distribution parameter. For a normal
distribution, the intercept and slope can be interpreted as the mean and standard deviation of the sample data.
Figure 3 illustrates the relationship of three groups of data generated from normal distributions with different
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Figure 3. Q–Q plot of normal distribution with different parameters

means and standard deviations. The Q–Q plots and the fitted lines are drawn on the same graph. As can be seen,
compared with the fitted line from a Normal(0, 1) dataset, the line fitted for the dataset from a Normal(1, 1)
distribution shifts upward by one unit, while the line from the Normal(0, 2) dataset is steeper than the other two
and it still passes through the origin.

A linear profile can be characterized by its intercept and slope. Parameter estimations are done by using
generalized least square. Although the original observations are independent and have an identical distribution,
the independence no longer holds when they are reordered and put in pairs on the Q–Q plot, nor are they
of the same distribution. Generalized least squares can be applied to such a situation to estimate desired
parameters. Stuart and Ord16,17 gave a systematic introduction to ordered statistics and generalized least squares.
Let y1, y2, . . . , yn be n observations from the population distributed as normal with mean µ and standard
deviation σ . Reorder the data from the smallest to the largest and denote each entry as y(1), y(2), . . . , y(n),
where y(r) is the rth smallest value. Let z(r) be the corresponding quantile from the standard normal distribution.
There exists a relationship between y(r) and z(r) (see Stuart and Ord16,17):

y(r) = µ + σz(r), r = 1, 2, . . . , n (1)

For sufficiently large sample size n, the vector z = (z(1), z(2), . . . , z(n)) is approximately multivariate
normally distributed. Let E(z) = m = (m1, m2, . . . , mn)

′ and Cov(z) = V. The calculations for the elements
of the variance–covariance matrix of z are

vij = piqj

nfifj

, for all 1 ≤ i ≤ j ≤ n (2)

where pi = �(z(i)) is the percentage of the data less than z(i) for the standard normal distribution, qi = 1 − pi ,
fi ≡ f (z(i)) = d�(z(i))/dx is the density function of the standard normal distribution at point z(i). The above
relationship defines the upper triangle of the matrix; the lower half can be obtained from the symmetric property
by transposing.

Correspondingly, y = (y(1), y(2), . . . , y(n))
′ has E(y) = µ1 + σm and Cov(y) = σ 2V, where 1 is the unit

vector. It is easy to see that y(r) has a different mean and variance for different r . y can be re-expressed as

y = µ1 + σm + ε (3)

where ε is the error term and E(ε) = 0 and E(εε′) = σ 2V.
Under the assumption of multivariate normality of y, we can use generalized least squares to fit the regression

model and find the parameters µ and σ . For a group of observations y that are sampled from a normal
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distribution, the estimation for the intercept and slope parameters of the fitted line are (Stuart and Ord16,17)

µ̂ = 1′V−1y/1′V−11 (4)

σ̂ = m′V−1y/m′V−1m (5)

Var(µ̂) = σ 2/1′V−11 (6)

Var(σ̂ ) = σ 2/m′V−1m (7)

Cov(µ̂, σ̂ ) = 0 (8)

As can be seen from (4)–(8), the covariance between the intercept and the slope is zero, which enables us
to simplify the monitoring by using an univariate chart later on. If given V −1, for a group of observations, the
estimation for µ̂ and σ̂ can easily be obtained.

By investigating the residual, we are able to estimate how well the line fits the data. Because of the unequal
variance and correlation between the ordered statistics, we use the error sum of square (ESS) as an indication:

ESS = (y − ŷ)′V−1(y − ŷ) (9)

where ŷ is the estimation of the observations and satisfies the following relationship:

(y − ŷ)′V−1(y − ŷ)

σ 2
∼ χ2

n−2 (10)

The ESS measures how well the line fits the data and judges the linearity of the samples.

3. PHASE I METHODS

Woodall18 has emphasized distinguishing between Phase I and Phase II when setting up a control chart. Phase I
is a procedure that helps us to understand the variation of a process and model the in-control process after
stabilizing it. A group of historical observations are usually given in Phase I. We need to determine the status
of the process and keep only those observations that are taken when the process is in-control. Then, process
parameters such as the mean and variance are estimated from the in-control historical observations.

One important job in Phase I is to separate in-control and out-of-control data from historical observations.
In our application, we use separate Shewhart-type x̄–R charts for the intercept, slope and ESS. Observations
that exceed the control limit are removed and then the control limits are adjusted to check the data set again.
This step is iterated several times until all points are in-control. Once the stabilization is achieved, parameters
will be estimated by proper modeling.

For the large sample size scenario this paper targets, the linear profile generated from the Q–Q plot is used to
model a stable process in both Phase I and Phase II.

Parameters of the model include its intercept µ and slope σ . We use this notation because the intercept and
slope of the fitted line can be interpreted as the mean and standard deviation of the sample (see Chambers
et al.13).

It is necessary to estimate the target value of µ, σ and ESS from the historical data. Suppose that k groups
of in-control samples are left after the above stabilization step. For each sample, a line is fitted to its Q–Q plot
and a group of µ, σ and ESS are estimated. After obtaining k groups of values, the average of these is taken as
the target of the parameters. Denote µ0 and σ0 as the target value of µ and σ , respectively, and the following
relationships can easily be obtained (see Kang and Albin10),

µ0 =
∑k

i=1 µi

k
, σ0 =

∑k
i=1 σi

k
(11)

We then can replace the σ in (6) and (7) by σ0 for use in Phase II.
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As suggested by Kim et al.11, the approach proposed by Crowder and Hamilton19 to monitor residuals
works efficiently. Under the assumption of multivariate normality of y, ESS = (y − ŷ)′V−1(y − ŷ) follows
approximately a χ2 distribution with n − 2 degrees of freedom. As proved by Crowder and Hamilton19, if the
logarithmic transformation of ESS (denoted as LESS) is be charted, a better result is expected. Thus, for each
sample we take LESSi = log(ESSi ) as observations for charting. The mean and variance of LESS can also be
estimated from the k groups of in-control samples:

LESS0 =
∑k

i=1 LESSi

k
, Var(LESS0) =

∑k
i=1 (LESSi − LESS0)

2

k − 1
(12)

Until now, we have transformed the large sample into a linear profile and obtained an estimation for the
parameters. Profile monitoring techniques are employed in the next phase to monitor the fitted line and alarm
failures of the samples.

4. PHASE II METHODS

Given the target value of parameters, the task in Phase II is to set up charts to monitor the variation of the
parameters and detect hidden shifts based on the target condition obtained from Phase I.

The fitted line to the Q–Q plot from one sample can be characterized by its intercept and slope. As can
be learned from (8), the estimators of the intercept and slope are independent; this feature benefits us in that
it simplifies the monitoring. Two individual EWMA charts will be used to monitor the intercept and slope
simultaneously. We denote this monitoring scheme as the 2–E method.

As the normality of samples is better seen in the linearity of the Q–Q plot, we also add a chart to monitor
the residual. This happens to be what Kim et al.11 did. In their method, three EWMA charts are combined
to monitor the intercept, slope and residual. One minor modification to fit our application is the estimation of
residual. The residual is estimated by the ESS, as shown in (9). We denote this monitoring scheme as the 3–E
method.

The only difference between the 2–E and 3–E methods is whether or not the residual is monitored. Adding
one chart to monitor the residual may increase the false alarm rate. Manually decreasing the false alarm rate by
restricting the in-control average run length (ARL) may, however, lower the detection power. The tradeoff will
be judged in the next section by Monte Carlo simulation.

To set up EWMA charts for intercept, slope and residual, we use the following recursive relationships and
control limits:




EWMAµ(i) = rµi + (1 − r)EWMAµ(i − 1)

CLµ = µ0 ± kµσµ

√
r

2 − r

(13)




EWMAσ (i) = rσi + (1 − r)EWMAσ (i − 1)

CLσ = σ0 ± kσσσ

√
r

2 − r

(14)




EWMAe(i) = r ln(ESSi ) + (1 − r)EWMAe(i − 1)

CLe = LESS0 ± keσe

√
r

2 − r

(15)

for i = 1, 2, . . . . µ0, σ0 and LESS0 are the target of intercept, slope and the logarithmic ESS, respectively.
σµ, σσ and σe are the standard deviations corresponding to each parameter. r is the smoothing parameter for
EWMA chart. kµ, kσ and ke are set to achieve the desired in-control ARL for each chart. The starting value of
each chart is set as the corresponding target value µ0, σ0 and LESS0, respectively.
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Two-sided EWMA charts are used since we want to be alarmed whenever the process deviates from the
normal to either a better or worse condition.

5. RUN LENGTH PERFORMANCE ANALYSIS

In order to investigate monitoring performance, we use Monte Carlo simulation to find the influence of mean
shifts and standard deviation shifts with different patterns.

Three methods are selected for comparison. The first is the aforementioned 2–E method. Two univariate
EWMA charts are employed to monitor the intercept and slope. The second is the 3–E method, with an
additional chart to simultaneously monitor the residual. The weight coefficient in all EWMA charts is set to
0.2, which is a moderate value adopted by most studies in the literature. Finally, the conventional x̄–S chart is
also set for the same group of data.

Without loss of generality, all observations are generated from the normal distribution with µ = 0 and σ = 1.
The size of each sample is 500. All ARL values are estimated using at least 10 000 replicates.

The overall in-control ARLs of all the combined charts are set to 200. However, for the 3–E method,
the individual in-control ARL of each EWMA chart is roughly 586. For the other two methods, each of the
individual charts has an in-control ARL of about 400.

As mentioned above, a common failure condition of the display corresponds to a partial mean shift or partial
standard deviation shift, so we investigate the performance of different charting methods by adjusting the shift
proportion from 100% to a smaller value.

Table I gives the ARLs for shifts in sample mean. The third column lists ARLs as corresponding to a
100% mean shift. The left columns show the results corresponding to partial mean shifts; that is, less than
100% of observations in one sample have shifted, while others remain unchanged. For the 100% mean shift
case, compared with the two methods that use the EWMA chart, the x̄–S chart is slower in detecting the mean
shift when shift size is smaller than 2σ . However, if shift size become larger, x̄–S becomes as good as or even
better than the other two EWMA-based methods. When the shift proportion decreases from 100%, the x̄–S

method is no longer competitive with the other two methods, even when the shift size is large.
Among the two EWMA-based methods, the 2–E method is superior to or competitive with the 3–E method

in all cases. This result shows that when adding one more EWMA chart, the effect of increasing the detection
power is not as strong as of increasing the false alarm rate. Forcing the in-control ARL to be equal, the detecting
power of the 3–E method becomes lower than that of the 2–E method.

Table II shows the ARLs of the three methods when standard deviation shifts occur. Based on the valuable
suggestion of anonymous reviewers, a single EWMA chart to monitor the ESS was set up. This experiment
reveals that a single ESS chart does not show obvious improvement in monitoring the mean shifts, but it does
have the capability to alarm standard deviation shifts. So in Table II, we add the results from a single EWMA
chart that monitors the ESS for comparison.

The column title still indicates the shift proportion, decreasing from 100% to 20%. x̄–S methods still perform
worse than the other two and a little better when shift size becomes larger than about 1.20, and this superiority
vanishes gradually when the shift proportion decreases.

The ESS chart shows capability to alarm standard deviation shifts for all proportions. However, when
combining with the 2–E method to generate a 3–E method, the advantage is not so obvious. The 3–E method
is competitive with, but not always better than, the 2–E method. This shows that the additional chart within the
3–E method does not contribute much more to the detection of shift than the false alarm it introduced.

6. CONCLUSION

This work has aimed to monitor a huge sample sized scenario. Novel schemes based on Q–Q plot transformation
have been proposed to deal with some serious failure patterns.
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Table I. ARL comparison of three schemes for mean shift from µȳ = 0 to µȳ = α

Shift proportion
Charting

α methods 100% 80% 60% 40% 20%

0.20 x̄–S 180.0 185.6 191.9 195.6 199.6
3–E 131.2 150.0 170.3 185.2 196.2
2–E 120.1 141.1 163.8 182.6 196.5

0.40 x̄–S 139.4 157.0 173.1 185.7 195.4
3–E 57.7 80.4 112.5 151.4 185.5
2–E 50.3 70.9 101.7 141.0 182.6

0.60 x̄–S 96.7 121.0 147.9 173.2 191.8
3–E 27.8 42.2 68.0 112.5 170.0
2–E 24.5 37.0 59.5 101.8 164.1

0.80 x̄–S 63.7 89.4 121.2 157.4 185.7
3–E 16.1 24.6 42.1 80.5 151.7
2–E 14.4 21.9 37.0 71.0 141.3

1.00 x̄–S 40.9 63.8 96.8 139.6 180.1
3–E 10.6 16.1 27.7 57.8 132.0
2–E 9.7 14.5 24.6 50.4 120.5

1.50 x̄–S 15.2 27.4 50.9 96.8 161.4
3–E 5.6 7.8 12.8 27.6 88.1
2–E 5.3 7.3 11.7 24.6 77.6

2.00 x̄–S 6.5 12.6 27.4 63.6 138.9
3–E 3.8 5.1 7.8 16.1 57.7
2–E 3.6 4.8 7.3 14.5 50.5

2.50 x̄–S 3.3 6.5 15.2 40.8 116.6
3–E 2.9 3.8 5.6 10.6 39.1
2–E 2.8 3.6 5.3 9.7 34.4

3.00 x̄–S 2.0 3.7 8.9 27.4 96.1
3–E 2.4 3.1 4.4 7.8 27.8
2–E 2.3 2.9 4.1 7.3 24.6

Three approaches, the x̄–S, 2–E and 3–E methods, have been applied to monitor both mean and standard
deviation shifts. A single ESS chart has also been set up for the standard deviation shifts. The tradeoff of adding
one chart to increase the false alarm rate and increase the detecting power has also been investigated using
simulation.

Simulations were conducted for the cases where different shift proportions are applied for the main findings
are summarized below.

1. For a mean shift, the EWMA-based method is superior to the x̄–S method when the shift size is small,
while the superiority gradually vanishes when the shift proportion decreases from 100%, which is usually
the case for a large sample size scenario. The 2–E method has always outperformed the 3–E method,
suggesting that adding one more chart to monitor the residual does not contribute much to the detection
of the mean shift, but leads to an increase in false alarm rate. Thus, the 2–E method is recommended for
the mean shift monitoring.

2. The x̄–S method is slow in detecting the standard deviation shift, while a single EWMA chart monitoring
the ESS is better than the x̄–S method. The 2–E method shows the best performance in almost all cases.
Although the 3–E is competing with the 2–E method, especially for a small shifts with small proportion,
adding one more chart will also increase the complexity. Thus, the recommendation is still to use the
2–E method for a general situation. A single ESS chart can be considered for the sake of simplicity of
application.
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Table II. ARL comparison of three schemes for standard
deviation shift from σy = 1 to σy = β

Shift proportion
Charting

β methods 100% 80% 60% 40% 20%

1.02 x̄–S 76.7 99.1 127.0 157.3 183.8
3–E 27.7 42.8 69.8 116.5 177.3
2–E 26.7 41.5 69.9 119.4 184.0
ESS 46.1 63.5 90.2 130.9 178.0

1.04 x̄–S 20.5 34.1 57.8 97.6 156.0
3–E 7.7 11.2 19.1 41.7 115.0
2–E 7.4 10.7 18.3 40.9 118.2
ESS 14.5 20.9 33.9 62.4 129.0

1.06 x̄–S 6.9 12.5 25.5 56.5 124.7
3–E 4.3 5.8 9.0 18.8 67.1
2–E 4.1 5.6 8.6 18.0 67.4
ESS 7.5 10.5 16.8 33.5 87.9

1.08 x̄–S 3.1 5.7 12.2 32.3 95.4
3–E 3.0 3.9 5.7 10.8 40.4
2–E 2.9 3.7 5.5 10.4 39.0
ESS 5.1 6.8 10.3 20.4 60.4

1.10 x̄–S 1.8 3.0 6.5 18.9 72.0
3–E 2.4 3.0 4.2 7.4 25.7
2–E 2.3 2.9 4.0 7.1 24.7
ESS 3.8 5.0 7.3 13.7 43.1

1.20 x̄–S 1.0 1.0 1.3 2.7 16.4
3–E 1.2 1.5 2.0 2.8 6.9
2–E 1.1 1.4 1.9 2.7 6.7
ESS 1.9 2.3 3.0 4.7 12.7

1.30 x̄–S 1.0 1.0 1.0 1.2 5.0
3–E 1.0 1.0 1.2 1.9 3.8
2–E 1.0 1.0 1.2 1.8 3.6
ESS 1.3 1.6 2.0 2.9 6.4

1.40 x̄–S 1.0 1.0 1.0 1.0 2.2
3–E 1.0 1.0 1.0 1.4 2.6
2–E 1.0 1.0 1.0 1.3 2.5
ESS 1.0 1.2 1.6 2.1 4.2

1.50 x̄–S 1.0 1.0 1.0 1.0 1.4
3–E 1.0 1.0 1.0 1.1 2.1
2–E 1.0 1.0 1.0 1.1 2.0
ESS 1.0 1.0 1.2 1.7 3.1

3. The monitoring performances of all charting schemes decrease rapidly when the shifted proportion
decreases because of the submerging effect of the large sample size.

A notable promising usage of the Q–Q plot is to monitor a process whose output is not normal. The traditional
efforts in monitoring non-normal outputs are either to transform the original data to a normal distribution or
to use non-symmetrical control limits to fit non-normality (see Yourstone and Zimmer20 and Chou et al.21).
By using the Q–Q plot monitoring method, we can easily handle the non-normality of the process by changing
the reference distribution or simply use empirical distribution if no existing distributions can be fitted to the data
perfectly. Further research could extend the proposed scheme to multivariate scenarios using similar techniques
to those presented in this paper.
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Profile monitoring is a promising area, which has a wide application in reality. Research on the statistical
monitoring of profiles, however, has just begun. The linear profile monitoring techniques provide efficient ways
to monitor the huge sample size environment. We believe that research on the statistical monitoring of more
general profiles is extreme challenging and will benefit industrial applications greatly.
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