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A B S T R A C T   

In programs monitoring surgical quality, risk-adjusted control charts have been used widely to detect changes in 
surgical performance. Ignoring the survival time may lead to information loss and thus attenuate the monitoring 
efficiency. However, previous methods based on survival time information only focus on detecting the change in 
average risk. The stability of surgical performance measured by scale parameters could be of interest in moni-
toring. In this study, we extend the risk-adjusted monitoring approach to include survival outcomes, in which 
both the location and scale parameters are monitored simultaneously. Based on the weighted score test for the 
Cox model, we propose to use an exponentially weighted moving average chart to monitor changes in average 
surgical risk and the existence of its variance, which could be of interest in practical surgical monitoring pro-
grams. Simulation results indicate that the proposed method detects changes in the variance of surgical per-
formance and small shifts in surgical risk more efficiently than existing cumulative sum methods. In addition, the 
proposed method shows good efficiency for various magnitudes of shift. The proposed chart was applied to a data 
set from the Surgical Outcome Monitoring and Improvement Program in Hong Kong, identifying an improvement 
in a hospital’s outcomes.   

1. Introduction 

Statistical process control (SPC) methods (Shang, Tsung, & Zou, 
2013; Shen, Zou, Jiang, & Tsung, 2013; Castagliola & Tsung, 2005; Shu 
& Tsung, 2003; Chen et al., 2007; Jiang and Tsui, 2008) have been 
adapted to monitor surgical risks and to help identify the root cause of 
problems (Paynabar et al., 2012; Steiner et al., 2000; Cook et al., 2011; 
Steiner, 2014). The SPC methods have gained popularity since Treasure, 
Taylor, and Black (1997) and Waldie (1998) pioneered the use of the 
control charts to monitor surgical performance at Bristol Hospital 
because of their advantages in detecting changes in unobserved states. 

A risk-adjusted model with surgical factors was employed to 
accommodate the heterogeneity of patient-level risks in surgery, and 
then charting statistics were adopted to monitor the adjusted risks 
(Woodall et al., 2015). Specifically, Steiner et al. (2000) proposed a risk- 
adjusted cumulative sum (RA CUSUM) chart to detect a deterioration in 

30-day mortality, and Cook et al. (2011) used the Exponential Weighted 
Moving Average method to monitor adjusted surgical risks (RA EWMA). 
To monitor the variation of surgical risks, which is an important 
dimension when evaluating surgical performance, Liu et al. (2018) 
proposed an online weighted score test to detect changes in both average 
risk and variance. 

The Hospital Authority (HA) of Hong Kong launched the Surgical 
Outcome Monitoring Improvement Program (SOMIP) in 2008, where 
the surgical risks in each public hospital were evaluated annually. The 
Variable Life Adjusted Display (VALD) (Lovegrove et al., 1997; Sherlaw- 
Johnson, 2005; Grigg and Farewell 2004) was employed to plot changes 
in the adjusted surgical risks each hospital by using logistic regression to 
fit the outcome and patient-level factors. Based on that, the CUSUM 
(Steiner et al., 2000) or EWMA (Grigg and Spiegelhalter, 2007; Cook 
et al., 2008; Yue et al., 2017) method was used to detect significant 
deteriorations in surgical performance. More VLAD results in SOMIP can 
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be found in Yuen (2013). 
In the above approaches and programs, 30-day mortality is the most 

commonly used outcome for evaluation because it is easy to interpret 
and can provide a good measure for tracking improvements in quality 
(Mant, 2001; Merkow et al., 2013; In et al., 2016). However, as advances 
in life support systems prolong survival, there are increasing concerns 
that postoperative death could be artificially delayed to beyond 30 days 
if 30-day mortality is the only standard used for quality assessment 
(Walters et al., 2014; In et al., 2016). Even though some scholars have 
proposed more extended periods to mitigate the effect of 30-day mor-
tality, such as 90-day mortality (Talsma et al., 2014; Mise et al., 2015), 
the use of a binary outcome with a fixed cut-off time is still likely to lose 
important information (Steiner and Jones, 2010). For example, patients 
who died on the first day of a study period may have experienced a 
different quality of surgery to those with the same preoperative risks 
who died later. Still, methods based on a binary outcome will give the 
same evaluation and monitoring results. 

Sego et al. (2009) considered the log-logistic and Weibull distribu-
tion for the baseline hazard in monitoring, and the log-likelihood ratio 
score was derived to update the CUSUM statistic. Following the same 
parametric setting for baseline hazard and likelihood ratio, Steiner and 
Jones (2010) proposed an EWMA method to monitor continuous sur-
vival time. Although those methods are applicable when monitoring 
survival outcomes, the parametric assumption of baseline hazard may 
not be correct in practice in some scenarios and could then bias the 
charting statistic. Biswas and Kalbfleisch (2008) and Gandy et al. (2010) 
considered the Cox proportional hazard model for risk-adjusted CUSUM. 
The baseline hazard was unspecified and could be estimated from a large 
population sample. Recently, Grigg (2019) developed a survival time 
risk-adjusted N-division (STRAND) chart for monitoring survival out-
comes online. He divided the continuous survival time into N strands 
and detected the change in the odds ratio of each strand by applying the 
RA EWMA described in Grigg and Spiegelhalter (2007). In addition, Gan 
et al. (2020) and Keefe et al. (2017) accommodated the information in 
survival time by daily updating the RA-CUSUM. However, those 
methods were designed to detect changes in the mean value of the 
surgical risk. Therefore, variance, which reflects the stability of surgical 
performance (Liu et al., 2018), may not be detected efficiently by these 
survival monitoring approaches. Therefore, it would be helpful to 
develop a risk-adjusted survival time control chart with unspecified 
baseline hazards that monitor both the mean (location parameter) and 
variance levels (scale parameter) and may evaluate surgical perfor-
mance more comprehensively. 

This paper proposes a control chart for continuous survival time after 
surgery, aiming to detect changes in the average surgical risk and its 
stability. By adapting the score test for random effects, as in Liang 
(1987), Zhu and Zhang (2006), and Liu et al. (2018), changes in the 
average hazard and its variance can be detected. In particular, the 
baseline hazard function can be estimated nonparametrically, and an 
EWMA procedure is applied to update the charting statistic after each 
surgical outcome sequentially. 

In the next section, the proposed control chart, constructed from the 
score test and the EWMA updating scheme, is introduced. A simulation 
study is presented in Section 3 to assess our method’s performance under 
different process changes. In Section 4, the time-to-death data from 
SOMIP in Hong Kong illustrate the applicability of the proposed chart. 
Finally, further discussion is presented in Section 5. 

2. Risk-Adjusted control chart for survival outcome 

Suppose the underlying death time of the ith patient following sur-
gery is T*

i , and the follow-up time is Ci, then the observed time Ti =

min(T*
i ,Ci). The censoring indicator is defined as δi = 1 if the ith patient 

died after surgery (i.e., T*
i ≤ Ci) and δi = 0 if the real time of death T*

i is 
beyond the study time (i.e., T*

i > Ci). Given the covariate xi, the hazard 

function of the ith patient at time t can defined as 

h(t|xi) = lim
Δt→0

Pr
(
t ≤ T*

i < t + Δt
⃒
⃒T*

i ≥ t, xi
)

Δt
(1) 

We further assume the proportional hazard model (Cox, 1972) 

h(t|xi) = h0(t)exiβ+γ (2) 

where the baseline hazard is unspecified and considered only related 
to t. The measured risk factor xi exerts the effect through an exponential 
function. A fixed γ can describe the change in the average of surgical 
performance (Biswas and Kalbfleisch, 2008; Gandy et al., 2010). Spe-
cifically, γ = 0 indicates that performance is normal (i.e., in-control 
state) and γ > 0 indicates a deterioration in surgical performance (i.e., 
out-of-control state) because the hazard increases to a level higher than 
the normal state. In practice, the clinicians are interested in detecting 
when surgical performance starts to deteriorate (γ > 0). It may be 
meaningful for regulators to monitor improvements (γ < 0). Therefore, 
the process monitoring is equivalent to sequentially testing 

H0 : γ = 0vs.H1 : γ ∕= 0 (3) 

For the ith case, the likelihood ratio between the alternative and the 
null hypotheses is 

LRi =
Li(γ)
Li(0)

=
[f (ti|xi, γ)]δi [S(ti|xi, γ)]1− δi

[f (ti|xi, 0)]δi [S(ti|xi, 0)]1− δi
=

[h(ti|xi, γ)]δi S(ti|xi, γ)
[h(ti|xi, 0)]δi S(ti|xi, 0)

(4) 

where ti denotes the observed death/survival time for the ith case, 

f(ti|⋅) indicates the probability density of death at time ti and S(ti|⋅) =

e
−
∫

h(ti

⃒
⃒
⃒⋅)dt 

is the survival function for a patient who survives beyond ti. 
Sego et al. (2008) assumed the log-logistic and Weibull accelerated 

failure time (AFT) models for the hazard function h(t|⋅) in deriving log 
(LRi) which is used to update the CUSUM. Steiner and Jones (2010) used 
the same parametric setting to construct the EWMA control chart. 
However, the distributional assumption for the hazard may be violated 
in some practical situations, leading to a bias in the charting statistic. 
Biswas and Kalbfleisch (2008) and Gandy et al. (2010) considered the 
Cox proportional model (2) to derive the CUSUM chart, allowing the 
baseline hazard to be estimated from a larger population sample. 

The above methods are designed to detect changes in the average 
hazard. The variance, which measures the “volatility” of the surgical 
performance, is also important when evaluating the quality of surgery 
(Liu et al., 2018). For example, e.g., the adjusted risk is 10%+5% in the 
first case, 10%-5% in the second case, 10%+5% in the third case, and so 
forth. The mean value keeps 10%, but the variation suggests that the 
hospital may not perform stably. Therefore, the volatility of the surgical 
risks should be considered in the monitoring method. Instead of 
assuming a fixed value for γ in (2), we considered the Cox model with 
random effects 

h(t|xi) = h0(t)exiβ+γi (5) 

where γi is a random effect for the ith patient with mean equal to zero 
and variance equal to σ2. It can be interpreted as “stable” surgical per-
formance when σ = 0, and σ > 0 indicates volatile performance, i.e., the 
increase of variance from zero indicates the deterioration of surgical 
quality. Therefore, monitoring the stability of surgical performance may 
be testing the hypothesis 

H0 : σ = 0vs.H1 : σ > 0 (6) 

Following Zhu and Zhang (2006), we can assume γi = συi, where υi 

follows an unspecified distribution F with a mean of zero and variance 
one. For the ith survival observations (ti,xi,δi), the conditional likelihood 
given random effect vi is 

Qi(ti, xi, δi|vi) = f (ti, xi|vi)
δi S(ti, xi|vi)

1− δi = h(ti, xi|vi)
δi S(ti, xi|vi) (7) 
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Then the log-likelihood of the ith patient can be written as 

li(σ) = log
∫ +∞

− ∞
Qi(ti, xi, δi|vi)dF(υi)

= log
∫ +∞

− ∞
[h(ti, xi|υi) ]

δi S((ti, xi|υi))dF(υi) (8) 

After the integration, the likelihood is a function of σ which describes 
the random feature of γi. To perform the homogeneity test (Liang, 1987; 
Zhu and Zhang, 2006; Liu et al., 2018) in (6), the first-order derivative of 
∑

li(σ) at σ = 0 can be derived as 

S(0) = S(σ)|σ=0  

= 1

/

2
∑n

i=1
Evi

[{
∂logQi(ti, xi, δi|vi)

∂γi

}2

+
∂2logQi(ti, xi, δi|vi)

∂γ2
i

] ⃒
⃒
⃒
⃒
⃒

σ=0  

= 1

/

2
∑n

i=1
{[δi − Λ(ti, xi)]

2
− Λ(ti, xi)} (9) 

where Λ(ti, xi) =
∫ ti

0 h0(s)exiβds is the cumulative hazard for the ith 
case. According to the counting process theory (Andersen and Gill, 
1982), the indicator δi(t) is a Poisson process with intensity function 
Λ(t, xi). By analogy with (Commenges and Andersen, 1995), the first 
part of the summation can be deemed the estimated variance. The sec-
ond part is similar to the expected variance from the null hypothesis. 
Therefore, the null hypothesis can be rejected if the difference between 
the estimated and expected variances is sufficiently significant. The 
baseline cumulative hazard Λ0(t) =

∫ t
0 h0(s)ds can be calculated from the 

historical training data (Breslow, 1972) 

Λ̂0(t) =
∑

i

I(ti ≤ t)δi
∑

j∈Rt
exj β̂

(10) 

where Rt = {i : ti < t} denotes the risk set for those who have not 
died and have not been censored just prior to t. The score test statistic 
S(0) will be identical to the results in Commenges and Andersen (1995) 
if the Breslow estimator (10) is included in the log-likelihood (8). 

The above test statistic would be inefficient in detecting moderate 
and small shifts, because the likelihood function (8) ignores the infor-
mation in the past observations (Zou and Tsung, 2010). In a previous 
study, Liu et al. (2018) used the weighted score test to monitor the 
surgical risk, where the fixed 30-day death risk was adjusted by logistic 
regression. However, using a binary outcome with a fixed cut-off time 
would ignore important information (Steiner and Jones, 2010). 
Following Zou and Tsung (2010) and Liu et al. (2018), we consider the 
weighted log-likelihood of the ith patient, 

li(σ) = λ(1 − λ)n− ilog
∫ +∞

− ∞
Qi(ti, xi, δi|vi)dF(vi) (11) 

where λ is a weighting parameter analogous to the smoothing 
parameter in the EWMA chart. The likelihood function indicates that the 
latest observations have more weights. The derivative of 

∑
li(σ) at σ = 0 

can be written as 

S(0) = S(σ)|σ=0

=
1
2
∑n

i=1
λ(1 − λ)n− i

[(
∂logQi(ti, xi, δi|vi)

∂γi

)2

+
∂2logQi(ti, xi, δi|vi)

∂γ2
i

]

σ=0

= 1/2
∑n

i=1
λ(1 − λ)n− i{

[δi − Λ(ti, xi)]
2
− Λ(ti, xi)

}
,

(12) 

where Λ(ti, xi) =
∫ ti

0 h0(s)exiβds is the cumulative hazard for the ith 
case, and the detailed derivation process is shown in the Appendix. 

In this study, we propose the EWMA charting statistic for the nth 

observation (tn,xn,δn) based on S(0) as 

Zn =
∑n

i=1
λ(1 − λ)n− i{

[δi − Λ(ti, xi)]
2
− Λ(ti, xi)

}
(13) 

which is equivalent to 

Zn = (1 − λ)Zn− 1 + λYn, n = 1, 2,⋯, (14) 

where Yn = [δn − Λ(tn, xn) ]
2
− Λ(tn, xn) and Z0 = 0. We can claim that 

a patient’s hazard is significantly different from normal (i.e., σ = 0) if 
the random deviation γi exists (i.e., σ ∕= 0). Thus, the proposed risk- 
adjusted EWMA survival (RAES) control chart can be used to detect 
changes in surgical performance if the statistic Zn is higher than an upper 
limit Lu or less than a lower limit Ll. Specifically, there will be a signif-
icant deterioration in surgical performance when Znis above the control 
limit Lu and a significant improvement when Znis below Ll. It should be 
noted that the signal triggered by crossing the upper limit may also 
indicate a change in the scale parameter because the variance can only 
increase from zero under the null hypothesis. When implementing the 
proposed control chart, the baseline hazard Λ0(t) and the regression 
parameter β can be estimated using the in-control (IC) observations in 
the Phase I stage (Jones-Farmer et al., 2014). Specifically, the Cox 
regression can be applied to IC survival outcomes and risk factors to 
obtain the parameter estimation of β and baseline hazard Λ̂0(t), in which 
the partial likelihood method is used to estimate the β and the Breslow’s 
estimator Λ̂0(t) in (10) could be calculated at each time point. Then in 
phase II, the hazard Λ(tn, xn) = Λ0(tn)exnβ and the charting statistic Znin 
(14) can be computed for nth observed data (tn,xn, δn). The statistic Zn 

will be compared to the control limits Lu and Ll, when the nth new data is 
collected. The out-of-control (OC) alarm is triggered when Zn crosses one 
of the control limits. 

The performance of RAES charts, as proposed, is usually evaluated by 
the average run length (ARL) which is defined as the average number of 
cases required to trigger an alarm for a particular size of change. Given a 
pre-specified ARL, the control limits can be determined using the dis-
tribution information of the charting statistic. However, deriving the 
exact distribution of Zn is intractable, even though the asymptotic dis-
tribution of Yn can be obtained (Commenges and Andersen, 1995; Zhu 
and Zhang, 2006). Instead, a Monte Carlo method can be employed to 
determine the control limits for a given ARL. Specifically, we randomly 
select the IC samples based on historical data and compute the run 
length when an alarm is triggered. The IC ARL can be obtained by 
repeating the procedure 10,000 times. Then, the control limits can be 
determined such that the IC ARL is close to some pre-specified level by 
repeatedly implementing this simulation scheme with the generated 
data. Similar to Steiner et al. (2000), the obtained control limits are 
associated with the population of the risk factors. In practical use, the IC 
ARL may be set to some large value rather than ARL = 400, because the 
consequences of a false alarm may be severe. 

3. Simulation study 

We used a series of simulation studies to assess the performance of 
the proposed RAES chart with various magnitudes of shift. The under-
lying survival times are generated from Cox models (2) and (5) with 
constant baseline hazard h0(t) = μ, i.e., the baseline survival times 
follow an exponential distribution exp(μ). In particular, the independent 
variable of the ith patient xi is generated from the standard normal 
distribution and β = 0.5. Following the surgical practice for emergency 
patients in SOMIP, the 30-day mortality is set at 8%, and thus the 
parameter μ is determined so that the probability of surviving beyond 
30 days is 1–8%=92%. Specifically, the random number ui is generated 
from a uniform distribution in (0, 1), and the underlying true survival 
time for the ith patient with risk factor xi is obtained by ti = ui

exiβ log(0.92/30). 
Further, we censor the survival time at t = 30, i.e., the observed time is ti 
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if ti ≤ 30 and 30 if ti > 30. Cox model (2) is used to generate data with 
different fixed shifts, and model (5) is used to simulate random shifts. 

The control limits were determined using the Monte Carlo method in 
Section 2. In SOMIP of Hong Kong, the number of elective surgical cases 
in each hospital every year varies from 300 to around 1000. To control 
the false alarm rate for the in-control state, we set the IC ARL = 1000 in 
simulation studies. For comparison, we chose the RA-CUSUM chart for 
survival data (Biswas and Kalbfleisch, 2008; Gandy et al., 2010). The 
upward RA-CUSUM statistic is given by 

Zn + = max(Zn− 1 + Wn, 0) (15) 

where Z0 + = 0 and Wn is determined by the log-likelihood ratio in 
(4). For the in-control hazard h0(t|xi) = h0(t)exiβ and out-of-control 
hazard h1(t|xi) = ρh0(t|xi), Wn could be rewritten as 

Wn = log(ρ)δn − (ρ − 1)Λ0(tn)exnβ (16) 

where the baseline cumulative hazard at each time can be calculated 
by Breslow’s estimator (10). The chart will signal when Zn + exceeds the 
upper boundary L for RA-CUSUM. For improved surgical quality, a 
lower-sided RA-CUSUM chart Zn − = min(Zn− 1 − Wn,0) can be used. The 
control chart is designed to detect surgical deterioration (i.e., an in-
crease in Zn + ). An improvement in surgical quality (i.e., the decrease in 
Zn − ) may still be meaningful and worth monitoring. In this way, we 
compare the performance of the proposed chart and the RA-CUSUM 
chart for both upward and downward shifts. The hazard rate model of 
RA-CUSUM is shown as h(t|xi) = ρh0(t|xi), where the process is in- 
control when ρ = 1 and out-of-control when ρ ∕= 1. With ρ = eγ, the 
RA-CUSUM aims to monitor the fixed shift in (3). In the RASE chart, the 
random shift γi is monitored. Under the in-control state (σ = 0), the 
random shift is equivalent to the fixed shift γ = 0 because γi has mean 
zero. Therefore, the proposed RAES chart can simultaneously monitor 
both the scale and the location parameters. 

To compare both types of charts, we used known risk-adjusted 
models and different λ values (0.005, 0.01, 0.05) to construct the 
RAES charts corresponding to RAES1, RAES2, RAES3, respectively. 
Generally, small λ values are better for detecting small shifts, and large λ 
values are more effective for large shifts. Similar to the odds ratio setting 
in Liu et al.(2018), for the upward RA-CUSUM charts used to detect 
performance deterioration, CUSUMU1, CUSUMU2 and CUSUMU3 were 
designed withρ = 1.5, ρ=2 andρ = 4, respectively. The upward CUSUM 
with a larger hazard ratio is expected to detect the larger shifts effi-
ciently. For the downward RA-CUSUM charts, CUSUML1, CUSUML2, and 
CUSUML3 were designed to detect an improvement withρ = 0.8, ρ=0.5 
andρ = 0.3, respectively. The downward CUSUM with a smaller hazard 
ratio is expected to detect the larger shifts efficiently. When generating 
data, we considered three types of shifts in the out-of-control stage: 
shifts in the variance of random effect—θ; a fixed shift at the intercept of 
the Cox model—∊ and hazard ratios—ρ. The control limits were ob-
tained by setting the in-control average run length to 1000 (i.e., IC ARL 
= 1000), and the out-of-control average run length (OC ARL) was 
calculated from 10,000 replications. 

In practical monitoring, the hazard ratio under the alternative hy-
pothesis and the smoothness parameter is necessary when implementing 
the RA-CUSUM chart and the proposed RAES chart. It could be noticed 
that those parameters are associated with the performance of the charts 
under different shift sizes. Specifically, the CUSUM type chart may 
perform effectively when the observed changes are identical to the 
hazard ratio under the alternative hypothesis. The EWMA type chart 
could be efficient to monitor the small changes if the small smoothing 
parameter is selected. However, the magnitude of the observed changes 
may not be precisely predicted before the chart’s implementation. Thus, 
selecting the smoothing parameter λ in RAES and ρ in RA-CUSUM may 
influence the efficiency of the charts. In our study, the relative average 
index (RMI) value is used to evaluate the overall performance of these 
charts within a specific range of shift sizes, calculated as follows: 

RMI =
1
N

∑N

j=1

ARLρj − minARLρj

minARLρj

(17) 

where N is the total number of shifts considered, ARLρj is the OC ARL 
when detecting the shift ρj, minARLρj is the smallest OC ARL among all 
the given control charts when detecting the shift ρj. Thus, RMI reflects 
the average robustness of a control chart. According to Han and Tsung 
(2006), the smaller RMI indicates that the chart has an overall better 
performance in detecting different shift sizes. 

First, we use the upward RA-CUSUM charts and the upper-sided 
RAES charts to detect changes in variances of random effects. From 
Table 1, it can be seen that the proposed RAES charts perform signifi-
cantly better than the RA-CUSUM charts. The RAES charts with small 
smoothing parameters (λ = 0.005 and 0.01) perform better when the 
variances of random effect θ are small (θ = 0.1,0.5,1). When the vari-
ance changes from 2 to 10, RAES charts with a large smoothing 
parameter (λ = 0.05) detect the shifts more efficiently. Regarding the 
RMI values, the RAES chart with λ = 0.005 outperforms others over 
different magnitudes of shift, suggesting that it can be used to detect 
practical “instability” of surgical risks. In addition, the upward RA- 
CUSUM withρ = 2 has the smallest RMI value of the three RA-CUSUM 
charts, indicating it could be the choice if the RA-CUSUM chart is ex-
pected to monitor variance in a practical implementation. 

We also consider the shifts with different ratios of hazards. For 
example, ρ=2 means that the OC hazard is twice the IC hazard. ρ > 1 is 
equivalent to a deterioration in surgical performance, which should be 
monitored by the upward RA-CUSUM chart. Conversely, the case where 
ρ < 1 should be monitored by the downward RA-CUSUM chart. The 
results for upward control charts and downward controls are included in 
Tables 2 and 3, respectively. The ARL results show that small shifts can 
be detected more quickly by RAES charts with small λ values. As ρ in-
creases, the RA-CUSUM charts perform better when the shifts match 
those they are designed for. For example, CUSUMU3 whose parameterρ 
= 4 performs best when the shift ratio is exactly equal to 4, where ARL =
20.28. It can be observed that RAES charts with small λ (RAES1) can 
detect small shifts (ρ from 0.5 to 2) more efficiently than RA-CUSUM 
charts. When shifts become large (ρ = 0.1,0.3,4,8), RA-CUSUM charts 
show better performance than RAES charts. By comparing the RMI re-
sults, we conclude that a RAES chart with λ = 0.005 is most robust for 
different changes in hazard ratios. Thus the RAES1 chart can be used to 
monitor practical surgical performance when the real changes are 
unknown. 

Finally, we compare the performance of these charts when the fixed 
shifts occur at the intercept of the Cox model, i.e., ∊ from h(t|xi) =

h0(t)exβ+∊, at different values. The results are shown in Tables 4 and 5, 
where Table 4 compares performance when monitoring the deteriora-
tion of surgical risk, and Table 5 records the results of detecting im-
provements in surgical performance. The RAES charts with small λshow 
the lowest ARL values when the shifts, ∊, are small (-1≤ ∊ < 1), indi-
cating that RAES1 can detect small changes in hazard more efficiently 
than RA-CUSUM charts. On the other hand, the RA-CUSUM designed 
withρ = 4 performs better when shifts are large (|∊| > 1), consistent with 
the previous simulation results. Regarding the RMI, the RAES chart 

Table 1 
ARL and RMI performance of the upward CUSUM and the RAES charts with 
different θ values.   

θ = 0.1  θ = 0.5  θ = 1  θ = 2  θ = 5  θ = 10  RMI 

CUSUMU1 984 544  170.1  43.83  19.20  15.19  0.2232 
CUSUMU2 976 578  179.1  40.68  16.62  13.11  0.1680 
CUSUMU3 972 642  228.8  42.43  14.51  11.98  0.2146 
RAES1 966 466  139.2  39.33  17.29  13.60  0.0882 
RAES2 968 503  147.3  39.30  16.63  13.12  0.0960 
RAES3 973 606  193.2  38.37  14.01  10.71  0.1159  
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withλ = 0.005 shows the greatest robustness. The RA-CUSUM designed 
withρ = 2 and 0.5 has the best performance of the RA-CUSUM charts, 
suggesting that the RAES1, upward CUSUML2, and downward CUSUML2 

should be the choices when implementing practical monitoring. 

4. Application to the real data 

This section applies the proposed RAES and the RA-CUSUM charts to 
a real data series from the Surgical Outcome Monitoring and Improve-
ment Program (SOMIP) in Hong Kong. Since the actual size of the shift in 
the real data is unknown, we chose the RAES chart with parameterλ =
0.005, the upward CUSUM chart withρ = 2, and the downward CUSUM 
chart withρ = 0.5 to detect both deterioration and improvement in 
surgical performance, based on the RMI results of simulation studies. 
The data include the surgical outcomes from several hospitals between 
July 2009 and June 2012. For example, the data set from hospital A has 

the results of 1378 emergency surgical cases, including 894 operations 
from July 2009 to June 2011 and 484 operations in the 2011–2012 
period. 

First, we monitored hospital A’s quality of surgery in 2011–2012 
based on its previous average performance during 2009–2011. In 
particular, we used the data during 2009–2011 to train the risk-adjusted 
model, and the RAES chart was applied to monitor the surgical outcomes 
during 2011–2012. From the clinical practice in SOMIP, several risk 
factors, such as, Conscious of Neurological Status, Impaired Sensorium 
of Neurological Status, Presence of Uncorrected Bleeding, Use of Oral or 
Parenteral Steroid, Preoperative Chemotherapy for Malignancy, etc., 
were selected in the Cox regression model to adjust the survival out-
comes. The obtained risk-adjusted hazard model was 

h(t) = h0(t)exp(Conscious of Neurological Status ∗ (- 0.399)
+ Impaired Sensorium of Neurological Status ∗ 0.255

+ Presence of Uncorrected Bleeding ∗ 1.05
+ Use of Oral or Parenteral Steroid ∗ 0.215

+ Preoperative Chemotherapy for Malignancy ∗ 0.692 + ...)

The baseline cumulative hazard Λ0(t) =
∫ t

0 h0(s)ds can also be esti-
mated by using the Breslow estimator in (10). Then the Monte Carlo 
method in Section 2 was employed to determine the control limits. 
Specifically, a bootstrap procedure was used to randomly draw the IC 
samples in 2009–2011, and the control charts were applied to those 
samples to calculate the run length. We repeated this step 10,000 times 
to compute the ARL. Finally, the control limits were selected to fulfill the 
pre-specified IC ARL. For hospital A, the IC ARL is set as 600, which is 
slightly higher than the yearly average of surgical cases in hospital A, to 
obtain the control limit. Thus, the number of false alarms is less than one 
for the monitoring period if no change occurred. In addition, the annual 
number of emergency surgery from all hospitals is around 8000, and 
thus the IC-ARL = 8000 was also used to determine the control limits. 

The RAES and CUSUM charts are shown in Fig. 1. It can be observed 
that both RAES and CUSUM charts describe an improvement in hospital 
A in the early stages (before the 100th case) compared to its two-year 
average. The early improvement detected by the RAES chart triggers 
the alarm faster than the downward RA-CUSUM chart, indicating that 
the improvement may be subtle if the alarm signal is true. During the 
late stage of the monitoring period (after the 400th case), another 
improvement is detected by the RAES chart but not captured by the RA- 
CUSUM. This may be due to practical improvements in the surgical 
performance often being slightly over a one-year period. 

In addition, the same risk adjustment was applied to the cases of all 
hospitals in 2009–2011, and the RAES chart and RA-CUSUM charts were 
used to monitor whether hospital A’s performance exceeded the average 
of all hospitals in the period 2011–2012. Then we determined the upper 
and lower control limits using data from the previous two years and IC 
ARL = 8,000 because the yearly average of all hospitals is around 8000. 
The results are shown in Fig. 2. A downward trend was also identified in 
the early stage (before the 100 cases) by both the RAES and RA-CUSUM 
charts. However, this early improvement does not trigger an alarm, 
which may be because the magnitude is small compared to the average 
performance of all hospitals. After the 420th case, an improvement is 
detected by the RAES chart but not by the RA-CUSUM chart. This may be 
because the proposed RAES chart can detect small changes more effi-
ciently than the RA-CUSUM chart if the alarm signal at the late stage is 
accurate. 

5. Conclusions 

In this paper, we propose a control chart for continuous survival time 
after surgery, aiming to monitor the average surgical risk and the exis-
tence of its variance. By applying the Cox model, the baseline hazard 
function can be estimated nonparametrically and avoid the Sego et al. 
(2009) distributional assumption. The random effects added in the Cox 
model are used to describe shifts in the hazard function, and then a 

Table 2 
ARL and RMI performance of the upward CUSUM and the RAES charts with 
different ρ values.   

ρ = 1.1  ρ = 1.3  ρ = 1.5  ρ = 2  ρ = 4  ρ = 8  RMI 

CUSUMU1 589  264.8  154.7  72.46  24.67  12.83  0.2098 
CUSUMU2 620  288.0  164.6  71.36  21.75  11.13  0.1935 
CUSUMU3 674  363.6  219.0  88.84  20.28  9.38  0.3398 
RAES1 504  216.9  131.3  65.46  23.79  12.61  0.0862 
RAES2 532  236.4  138.2  67.31  23.24  12.20  0.1121 
RAES3 641  320.8  188.7  78.46  20.50  9.88  0.2418  

Table 3 
ARL and RMI performance of the downward CUSUM and the RAES charts with 
different ρ values.   

ρ =
0.9  

ρ =
0.8  

ρ =
0.7  

ρ =
0.5  

ρ =
0.3  

ρ =
0.1  

RMI 

CUSUML1 566  354.4  245.8  135.8  98.36  73.90  0.2093 
CUSUML2 614  382.3  252.7  132.1  81.22  57.34  0.1511 
CUSUML3 634  416.4  276.9  142.8  78.74  51.76  0.1873 
RAES1 511  303.1  209.3  120.4  81.48  61.72  0.0379 
RAES2 548  333.3  221.4  120.9  79.03  58.02  0.0598 
RAES3 668  449.3  307.9  155.8  87.85  54.69  0.2878  

Table 4 
ARL and RMI performance of the upward CUSUM and the RAES charts with 
different ∊ values.   

∊ =
0.1  

∊ = 0.3  ∊ = 0.5  ∊ = 0.8  ∊ = 1  ∊ = 2  RMI 

CUSUMU1 577  227.3  115.9  58.56  41.16  13.74  0.1776 
CUSUMU2 602  248.1  121.8  56.06  38.03  11.79  0.1604 
CUSUMU3 660  314.7  159.6  66.46  40.94  10.03  0.3168 
RAES1 490  186.2  102.6  53.96  39.24  13.30  0.0596 
RAES2 520  204.0  107.4  54.38  38.46  12.85  0.0840 
RAES3 623  275.6  136.4  59.40  38.72  10.59  0.2093  

Table 5 
ARL and RMI performance of the downward CUSUM and the RAES charts with 
different ∊ values.   

∊ =
-0.1  

∊ =
-0.3  

∊ =
-0.5  

∊ =
-0.8  

∊ =
-1.0  

∊ =
-2.0  

RMI 

CUSUML1 584  282.2  183.6  129.2  109.6  77.6  0.2167 
CUSUML2 625  297.6  181.3  115.2  93.7  60.6  0.1355 
CUSUML3 650  324.2  196.0  117.9  93.0  55.2  0.1643 
RAES1 521  242.5  153.9  108.1  91.2  64.9  0.0321 
RAES2 567  258.6  161.9  107.5  90.2  61.0  0.0520 
RAES3 678  356.0  220.5  134.0  105.2  59.3  0.2815  
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score-type statistic is obtained to test whether the variance of random 
effects is significant or not by using the homogeneity test (Liang, 1987; 
Zhu and Zhang, 2006; Liu et al., 2018). Because the variance under the 
null hypothesis (σ = 0) indicates that random effects in the hazard are 
not significant, the proposed RAES chart applying the EWMA procedure 
can be used to monitor shifts of both the average level and the variance 
parameter sequentially. For surgical cases, the proposed method could 
be employed to detect the stability of the surgical performance and 
changes in the average surgical risk. In the experimental part, we carried 
out a series of simulation studies and real data applications and took the 
RA-CUSUM chart in Biswas and Kalbfleisch (2008) for comparison. To 
assess the performance of the above two charts with different magnitude 
of shifts in simulations, we performed experiments changing the 

variance of random effects, the fixed shifts at the intercept of the Cox 
model, and the hazard ratios. The results show that the proposed RAES 
chart can detect shifts in the variance more efficiently than the RA- 
CUSUM chart, confirming the ability of the RAES chart to monitor the 
scale parameter. The RAES chart performs better for the location 
parameter than the RA-CUSUM chart in detecting small shifts, and the 
RA-CUSUM is superior for large shifts. By comparing the RMI values, the 
RAES chart with λ = 0.005 is most robust within the range of shifts, 
suggesting that this chart should monitor changes in surgical perfor-
mance because the shifts that occur are usually unknown before 
implementation. Comparing to the RA-CUSUM chart, which aims to 
detect the changes in average risk, the proposed RAES chart can monitor 
the existence of variance in addition to the mean values. In a practical 

Fig. 1. RAES (a) and CUSUM (b) charts monitor the deviation from hospital A’s average performance.  

Fig. 2. RAES (a) and CUSUM (b) charts for hospital A.  
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surgical risk monitoring project, the hospital authority could be inter-
ested in the methods that can identify the clinical root causes when the 
proposed chart triggered an alarm. 

It should be noted that the post-diagnostic method after alarm should 
further combine with the clinical experience to help discover the prob-
lem. When applied to real surgical data in Hong Kong, the proposed 
RAES appears more sensitive to the shifts during the monitoring period. 
This may be because practical changes in surgical performance are often 
subtle over one year. Further, the chart statistics can adopt the daily 
updating scheme in Gan et al.(2020) to avoid the delay caused by patient 
orders. In summary, we have extended surgical performance monitoring 
control charts for survival outcomes by adapting the score test for 
random effects. As a result, the detection of changes in the average 
hazard and its “stability” can be achieved. Both the simulation and 
practical studies verified the excellent performance of the proposed 
RAES chart. In this study, the monitoring method was derived from the 
null hypothesis in which the scale parameter is zero. Because it is also 
meaningful to know whether the volatility is less than a certain 
threshold in practice, the approach based on the null hypothesis with 
nonzero scale parameter is needed in the future study. 
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Appendix: 

The demonstration of the equation is as follows: 
Let θ = σ2, then we can rewrite the li(σ)as 

li(θ) = λ(1 − λ)n− ilog
∫ ∞

− ∞
Qi(ti, xi, δi|vi)dF(vi). (A.1) 

So we can find that 

S(θ) =
∑n

i=1
λ(1 − λ)n− i∂li(θ)

∂θ
=

∑n

i=1
λ(1 − λ)n− i

∂
∫ ∞

− ∞
Qi(θ)dF(vi)

∂θ∫∞
− ∞ Qi(θ)dF(vi)

, (A.2) 

where we can simply write Qi(ti,xi,δi|vi)as Qi(θ). For all of the vi obey the same distribution, we can simplify the question to consider only a specific 
v. if we use the Taylor expansion at a certain point θ0 to get the expansion form Q(θ), we can show that 

Q(θ) = Q(θ0) +
vθ− 1

2
0

2
∂Q(θ0)

∂γ
(θ − θ0)

+

⎡

⎢
⎣

∂2Q(θ0)

∂γ2 v2θ− 1
0 −

∂Q(θ0)

∂γ
vθ− 3

2
0

⎤

⎥
⎦
(θ − θ0)

2

8
.

(A.3) 

Therefore, 

∫ ∞

− ∞
Q(θ)dF(v) =

∫ ∞

− ∞

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Q(θ0) +
vθ− 1

2
0

2
∂Q(θ0)

∂γ
(θ − θ0)+

⎡

⎢
⎣

∂2Q(θ0)

∂γ2 v2θ− 1
0 −

∂Q(θ0)

∂γ
vθ− 3

2
0

⎤

⎥
⎦
(θ − θ0)

2

8

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

dF(v)

= Q(θ0) +
∂2Q(θ0)

∂γ2
(θ − θ0)

2

8θ0
.

(A.4) 

Since the mean of v is 0 and the variance of v is 1, we have 
∫∞
− ∞ vdF(v) = 0,

∫∞
− ∞ v2dF(v) = 1. That is why we got the equation (A.4). We can easily 

deduce that 
∂
∫∞
− ∞ QdF(v)

∂θ
=

∂2Q(θ0)

∂γ2

θ − θ0

4θ0
. (A.5) 
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Then we will figure out S(θ)|θ=0. In this condition, we know that 0 < θ0 < θ and θ is really close to 0, so we can use L’Hospital’s rule to calculate the 
equation (A.5). If we fix θ = kθ0, we have 

lim
θ→0

θ=kθ0

∂
∫∞
− ∞ Q(θ)dF(v)

∂θ
= lim

θ→0

θ=kθ0

∂2Q(θ0)

∂γ2

θ − θ0

4θ0
=

k − 1
4

∂2Q(θ)
∂γ2 . (A.6) 

If we set k = 3, there will be 

lim
θ→0

θ=3θ0

∂
∫ ∞

− ∞
Q(θ)dF(v)
∂θ∫∞

− ∞ Q(θ)dF(v)
= lim

θ→0

θ=3θ0

∂2Q(θ0)
∂γ2

θ− θ0
4θ0

Q(θ0)
=

∂2Q(θ)
∂γ2

2Q(θ)
|θ=0. (A.7) 

Therefore, 

S(θ)|θ=0 =
1
2
∑n

i=1
λ(1 − λ)n− i

∂2Qi(ti ,xi ,δi |vi)
∂γ2

Qi(ti, xi, δi|vi)
|θ=0. (A.8) 

We can quickly know the truth that 
(

∂logQi(ti, xi, δi|vi)

∂γi

)2

+
∂2logQi(ti, xi, δi|vi)

∂γ2
i

=

⎛

⎜
⎜
⎝

∂Qi(ti ,xi ,δi |vi)
∂γi

Qi(ti, xi, δi|vi)

⎞

⎟
⎟
⎠

2

+

∂2Qi(ti, xi, δi|vi)

∂γ2
i

Qi(ti, xi, δi|vi)
−

⎛

⎜
⎜
⎝

∂Qi(ti ,xi ,δi |vi)
∂γi

Qi(ti, xi, δi|vi)

⎞

⎟
⎟
⎠

2

=

∂2Qi(ti, xi, δi|vi)

∂γ2
i

Qi(ti, xi, δi|vi)
.

(A.9) 

Therefore, S(θ) can be rewritten as 

S(θ)|θ=0

=
1
2
∑n

i=1
λ(1 − λ)n− i

[(
∂logQi(ti, xi, δi|vi)

∂γi

)2

+
∂2logQi(ti, xi, δi|vi)

∂γ2
i

]

θ=0

= 1/2
∑n

i=1
λ(1 − λ)n− i{

[δi − Λ(ti, xi)]
2
− Λ(ti, xi)

}
,

(A.10) 

where Λ(ti,xi) =
∫ ti

0 h0(s)exiβds. For θ = σ2, if the θ→0, then σ→0, we can also find that 

S(σ)|σ=0

=
1
2
∑n

i=1
λ(1 − λ)n− i

[(
∂logQi(ti, xi, δi|vi)

∂γi

)2

+
∂2logQi(ti, xi, δi|vi)

∂γ2
i

]

σ=0

= 1/2
∑n

i=1
λ(1 − λ)n− i{

[δi − Λ(ti, xi)]
2
− Λ(ti, xi)

}
,

(A.11)  
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