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Abstract
In various modern statistical process control applications that involve

high-dimensional data streams (HDDS), accurate fault diagnosis of out-of-control

(OC) streams is becoming crucial. The existing diagnostic approaches either focus

on moderate-dimensional processes or are unable to determine the shift direction

accurately, especially when the signal-to-noise ratio is low. In this paper, we con-

duct a bold trial and consider the fault classification problem of the mean vector of

HDDS where determining the shift direction of the OC streams is important to per-

form customized repairs. To this end, under the basic assumptions that the in-control

data streams are normal with mean 0 and variance 1, and that the high-dimensional

observations after the alarm are solely OC, the problem is formulated into a

three-classification multiple testing framework, and an efficient data-driven diag-

nostic procedure is developed to minimize the expected number of false positives

and to control the missed discovery rate at given level. The procedure is statistically

optimal and computationally efficient, and improves the diagnostic effectiveness

by considering directional information, which provides insights to guide further

decisions. Both theoretical and numerical results reveal the superiority of the new

method.
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1 INTRODUCTION

With the rapid development of automatic in-process mea-

surement and data capture techniques, high-dimensional data

streams (HDDS) consisting of high-dimensional and sequen-

tial continuous observations have become highly common in

industrial applications, posing great challenges to the field of

conventional multivariate statistical process control (MSPC).

MSPC basically includes two tasks. The first one is to make

real-time decision whether the process has changed from

in-control (IC) to out-of-control (OC), and is often referred

to as online monitoring. The second one, post-signal fault

diagnosis, is to isolate the abnormal data streams responsible

for the change. When the process has undergone abnormal

changes, accurate fault diagnosis is crucial to help practi-

tioners eliminate the root causes of the OC state. While

the online monitoring problem of HDDS has attracted con-

siderable attention recently (Li, Zhang, et al., 2020; Liu

et al., 2015; Mei, 2010; Xian et al., 2018; Yan et al., 2018;

Zhang et al., 2020; Zou et al., 2015), the fault diagnosis

problem of HDDS is still an open field that needs to be studied

systematically. In this paper, we focus on the fault diagnosis

problem for the mean vector of HDDS.

Fault diagnosis of HDDS is closely related to applying

conventional MSPC diagnostic procedures to m variables

(assuming the data dimension is m), a topic that has been

fully investigated. The earliest studies attempted to cap-

ture the relationship between different process parameters
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by interpreting and decomposing Hotelling’s T2-type statis-

tics (Li et al., 2008; Mason et al., 1997), based on which

various step-down methods were also proposed (Sullivan

et al., 2007; Zhu & Jiang, 2009). Recently, by using variable

selection (VS) techniques, several MSPC schemes mainly

designed for online monitoring have been proposed (Capizzi

& Masarotto, 2011; Li et al., 2017; Wang & Jiang, 2009;

Zou & Qiu, 2009), which can be applied for a rough fault

diagnosis. Zou et al. (2011) proposed a unified multivari-

ate diagnostic framework that combines BIC and adaptive

LASSO, which has been shown to have better performance

than other conventional methods in various applications. The

aforementioned multivariate diagnostic approaches are intu-

itively sound, but may be suboptimal when applied to HDDS.

The major challenge is that, with complex underlying mod-

els and high dimensionality (much larger than the number

of OC observations), the curse of dimensionality problem

arises. Besides, these methods are computationally intensive

because they involve large-scale matrix computation. To han-

dle HDDS effectively, recently Zhang et al. (2020) proposed

a diagnostic framework based on the square-root LASSO

algorithm, yet their work is mainly concentrated in online

monitoring. Li, Xiang, et al. (2020) suggested a procedure to

isolate a subset with the minimum amount of IC information

and almost all of the OC information.

All the diagnostic procedures discussed above are designed

for nondirectional fault diagnosis, that is, they can only iso-

late the shifted OC data streams, but they are not necessarily

able to determine the shift direction (positive or negative)

of each OC data stream. However, in many applications, the

causes underlying the shifts in different directions may dif-

fer, and engineers must adopt customized measures based

on the shift direction. This is the case for many data sets

arising from manufacturing industries. A concrete motivating

example is the modern manufacturing process of semicon-

ductor integrated circuits and devices, which involves a series

of complicated steps. The key variables in the manufacturing

process are monitored persistently based on high-dimensional

data streams collected from numerous automatic sensors

(May & Spanos, 2006). When the process becomes OC, it is

of great importance to identify the data streams responsible

for the OC state, and carry out repairs as soon as possible.

Engineers must determine the shift direction of the OC data

streams, as the repair method to be adopted will depend on

the shift direction. Performing customized repairs based on

the shift direction will increase product quality and decrease

the manufacturing cost.

As a result, conducting directional fault diagnosis, or fault
classification, to determine the shift direction systematically

is highly desirable for HDDS. Unfortunately, existing meth-

ods often overlook directional information at all, and can only

determine the shift direction from the sign of the observed

value, which is too inaccurate for fault classification, and

consequently leads to poor diagnosis power when applied to

HDDS, especially when signal-to-noise ratio (SNR) is low.

In such circumstances, the precious OC information is often

drowned out by the IC data streams and noise, posing great

challenges to further decisions. Currently there is no satis-

factory directional diagnostic approach for HDDS. The fault

classification problem of HDDS still remains an open field

ripe for exploration.

In this paper, we aim to fill this research gap by propos-

ing an effective fault classification framework for HDDS to

assist in the isolation of data streams that are responsible

for the abnormal changes. To focus on the diagnostic phase,

similar to Zou et al. (2011) and Li, Xiang, et al. (2020), we

assume without loss of generality that the IC streams are

normally distributed with mean 0 and variance 1, and that

the high-dimensional observations after the alarm are solely

abnormal. We formulate the fault classification problem of

HDDS on the basis of a three-classification large-scale mul-

tiple testing framework. Based on the framework, a novel

definition of the missed discovery rate (MDR) is proposed. A

directional diagnostic procedure that minimizes the expected

number of false positives (EFP) and controls the MDR at

given level is then developed, into which the directional infor-

mation of the OC data streams are organically integrated. We

establish theoretically its validity and optimality for fault clas-

sification of HDDS. The proposed diagnostic procedure and

the corresponding theoretical results are also extended to the

cases when between-stream correlation exists. The numerical

performance of the proposed diagnostic procedure is investi-

gated via extensive simulation studies and a real life example.

The numerical results imply that the proposed procedure

outperforms its rivals in various scenarios.

The remainder of this paper is organized as follows. The

formulation of the fault classification problem of HDDS is

introduced in Section 2. The oracle and data-driven proce-

dures for fault classification and their validity and optimality

are developed in Section 3. Simulation studies are given

in Section 4. Section 5 applies the proposal to a real-data

example. Several concluding remarks are given in Section 6.

Technical details are given in the Online Appendix.

2 FAULT CLASSIFICATION PROBLEM OF
HDDS

In this section, we describe the fault classification problem

of HDDS in detail and formulate it into a multiple testing

framework. It is well known in the statistical process con-

trol (SPC) literature that after a change point, the underlying

process will change from IC to OC. When the process is IC,

at each time point t, there is an observation of dimension

m collected, denoted by Xt. Without loss of generality, it is

assumed that Xts are i.i.d., and that the data streams are stan-

dardized beforehand with mean 0 and variance 1. When the

process becomes OC, certain online monitoring scheme will

give an alarm signal. After the signal, assume that n ≥ 1
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observations XOC
1

, … ,XOC
n are collected with mean vector

𝝁 = (𝜇1, … , 𝜇m)T . In such a situation, a small set of com-

ponents of 𝝁 are non-zero due to the OC pattern. We further

assume that the distribution of XOC
i s is:

XOC
j |𝝁,𝜽 ∼ Nm(𝝁,Σ)𝜇i|𝜃i ∼ (1 − |𝜃i|)𝛿0(𝜇i)

+ I(𝜃i = 1)h1(𝜇i) + I(𝜃i = −1)h2(𝜇i)

𝜃i
i.i.d∼ Multinoulli(p0, p1, p−1),∑
k=0,1,−1

pk = 1, i = 1, … ,m, j = 1, … , n, (1)

where 𝜽 = (𝜃1, … , 𝜃m)T denotes the state (IC, positive

OC, or negative OC with probability p0, p1, or p−1, respec-

tively) of each data stream, 𝛿0(⋅) is the Dirac delta function,

h1(𝜇), 𝜇 > 0 and h2(𝜇), 𝜇 < 0 are the probability density

functions of 𝜇i given 𝜃i = 1 and 𝜃i = −1, respectively. Note

that variations of (1) have been widely used in the field of

high-dimensional analysis (Cai & Sun, 2009; Efron, 2004;

Mei, 2010; Zou et al., 2015). Based on XOC
1

, … ,XOC
n , we

utilize the sample mean X = 1

n

∑n
j=1XOC

j to implement fault

classification, which is a simple yet effective way to enhance

SNR. The notation X is simplified as X = (X1, … ,Xm)T in

this paper for convenience. Also note that the assumption of

normality in model (1) may be violated in real applications.

Nevertheless, for the most common non-normal distributions

in real applications, Xis would be asymptotically normal as

n increases. In such cases, procedures derived under the nor-

mality assumption should still work well, as will be discussed

numerically in later sections.

In essence, the objective of the fault classification problem

is to isolate the non-zero values of 𝝁, determine their shift

directions, and repair the corresponding data streams based

on their shift directions. Since 𝜃i takes the value 1 if 𝜇i > 0,

−1 if 𝜇i < 0, and 0 otherwise, the objective is equivalent to a

three-classification multiple testing problem:

H0
i ∶ 𝜃i = 0 versus H1

i ∶ 𝜃i = 1 versus H−1
i ∶ 𝜃i = −1,

i = 1, … ,m. (2)

The solution to (2) can be represented by a set of decision

functions, 𝜹 = (𝛿1, … , 𝛿m)T ∈ {0,1,−1}m, where 𝛿i = 1,−1,

or 0 if we claim that the ith data stream is positive OC, nega-

tive OC, or IC respectively. Based on 𝜹, the results of apply-

ing a three-classification multiple testing method are pre-

sented in Table 1. Appropriate indices should then be defined

based on this table to evaluate the diagnostic performance

of 𝜹.

To solve the fault classification problem of HDDS, we need

to ensure that most of the OC data streams are discovered and

the right direction identified. In such a context, the missed

discovery rate is defined as MDR(𝜹) = E(N10+N12+N20+N21

m1+m2

). A

closely related concept is the marginal MDR, which is defined

by

mMDR(𝜹) = E(N10 + N12 + N20 + N21)
E(m1 + m2)

.

TABLE 1 Classification of tested hypothesis

𝜹i = 0 𝜹i = 1 𝜹i = −1 Total

IC (𝜃i = 0) N00 N01 N02 m0

OC (𝜃i = 1) N10 N11 N12 m1

OC (𝜃i = −1) N20 N21 N22 m2

Total R0 R1 R2 m

In this paper, we utilize the mMDR to construct the diagnos-

tic framework, mainly for considerations to obtain theoretical

optimality results (see Section 3 for more details). It should be

noted that such marginal idea has been widely applied in the

multiple testing literature (Cai et al., 2019; Sun & Cai, 2007).

For convenience, the mMDR is abbreviated as MDR in the

rest of the paper.

We emphasize that the definition of MDR implies that when

an OC stream with 𝜃i = 1 is discovered but deemed as

𝛿i = −1, it should still be considered as a missed discov-

ery. If the MDR equals 𝛼, then (1 − 𝛼) × 100 percent of the

OC data streams are discovered and the right direction identi-

fied. While controlling the MDR, setting a reasonable target is

also crucial for the evaluation of 𝜹. In high-dimensional SPC

applications, since discovering too many IC data streams is

undesirable, the target is defined as the expected number of

false positives

EFP(𝜹) = E(N01 + N02).

Based on the above definitions, the fault classification

problem of HDDS now becomes a constrained optimization

problem

min
𝜹

EFP(𝜹) subject to MDR(𝜹) ≤ 𝛼. (3)

Before ending this section, we would like to remark on

the fault classification problem of HDDS. Our formulation

(1)–(3) is based on the compound decision-making frame-

work that involves solving m decision problems simultane-

ously. In the literature of multiple testing, many procedures

have been proposed based on the compound decision-making

framework to minimize the false non-discovery rate (FNR)

and to control the false discovery rate (FDR) or its variants at

given level (Holte et al., 2016; Sun & Cai, 2007). However,

in SPC, these procedures may not fit into the fault classifi-

cation problem of HDDS. The main reason is that the FDR

being controlled only guarantees that the proportion of the IC

data streams that are mis-specified as OC is controlled. It is

still possible that many OC data streams would be missed,

which runs counter to the objective of fault classification in

industrial applications. Noticing that no existing diagnostic

procedure is designed for the fault classification problem of

HDDS, our formulation of minimizing the EFP while con-

trolling the MDR can be regarded as a perfect fusion of the

fault classification problem and the directional compound

decision-making framework.
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3 MULTIPLE TESTING-BASED
DIRECTIONAL DIAGNOSTIC FRAMEWORK
FOR HDDS

In this section, we set out to the following tasks: (i) propose

the oracle procedure for the fault classification of HDDS and

prove its validity and optimality for MDR-control, where ora-

cle means that the distribution of X is completely known;

and (ii) to address practical needs, propose the data-driven

procedure and show its asymptotic validity and optimality.

Following the convention in high-dimensional SPC analysis,

we first assume that the data streams are independent of each

other to derive our method in Sections 3.1–3.2, that is, Σ =
Im×m, where Im×m is the m-dimensional identity matrix. The

extension to the correlated case and the robustness of the pro-

posed diagnostic procedure will be discussed in Section 3.3

and also numerically in Section 4.

3.1 Oracle diagnostic procedure

Let g(Xi) = p0g(Xi|𝜃i = 0) + p1g(Xi|𝜃i = 1) + p−1g(Xi|𝜃i =
−1) be the marginal probability density function (p.d.f.) of Xi,

where g(Xi|𝜃i = k) is the marginal p.d.f. of Xi given 𝜃i = k.

Define

Hk(Xi) = P(𝜃i = k|Xi) = g(Xi|𝜃i = k)P(𝜃i = k)∕g(Xi). (4)

Then we can easily check that under model (1), problem (3)

is equivalent to minimizing

EFP(𝜹) = E

[ m∑
i=1

|𝛿i|(1 − |𝜃i|)]

= EX

[ m∑
i=1

∑
k=1,−1

I(𝛿i = k)H0(Xi)

]
subject to

EX

{ m∑
i=1

∑
k=1,−1

[1 − I(𝛿i = k) − 𝛼]Hk(Xi)

}
≤ 0,

where EX is the expectation taken over Xi. To solve this

constrained optimization problem, the following penalized

objective function is considered:

LX(𝜆, 𝜹) =
m∑

i=1

∑
k=1,−1

{I(𝛿i = k)H0(Xi)

+ 𝜆 [1 − I(𝛿i = k) − 𝛼]Hk(Xi)} , (5)

where 𝜆 is a penalty parameter. Given 𝜆 > 0, we can easily

verify that LX(𝜆, 𝜹) is minimized by

𝛿𝜆i =
⎧⎪⎨⎪⎩

k, if Λi(Xi) =
Hmax(Xi)
H0(Xi)

≥ 1∕𝜆 and

Hmax(Xi) = Hk(Xi), for k = ±1

0, Otherwise,

(6)

where Hmax(Xi) = max {H1(Xi),H−1(Xi)}. Therefore,

EX(LX(𝜆, 𝛿)) is also minimized. We show in Theorem 1 below

the validity and optimality of the decision rule (6) for fault

classification of HDDS.

Theorem 1 Under model (1), consider the
oracle statistics Hk(Xi) and the penalized objec-
tive function LX(𝜆, 𝜹). Denote by QOR(𝜆) the
level of decision rule 𝜹𝜆 =

{
𝛿𝜆

1
, … , 𝛿𝜆m

}
, where

𝛿𝜆i is defined in (6). Define

𝜆∗ = inf {𝜆 ∶ QOR(𝜆) ≤ 𝛼} .

Then for any 𝛼 ≥ lim
𝜆→∞

QOR(𝜆), we have

i. 𝜆∗ exists uniquely, and MDR(𝜹𝜆∗ ) = 𝛼.

ii. For any 𝜹 satisfying MDR(𝜹) ≤ 𝛼,

EFP(𝛿𝜆∗ ) ≤ EFP(𝜹).

It is worth noting that the condition 𝛼 ≥ lim𝜆→∞ QOR(𝜆)
is indispensable in the fault classification problem of HDDS.

The reason is that this condition is essentially related to our

definition of the MDR, in which a data stream with 𝜃i = 1(−1)
determined as 𝛿i = −1(1) is flagged as a miss discovery,

whereas in the nondirectional fault diagnosis problem, only

a data stream with 𝜃i ≠ 0 determined as 𝛿i = 0 is flagged

as a miss discovery. Obviously, the difficulty of the former is

more significant than that of the latter, especially when the

OC signal is weak. In other words, when the shift size is close

to 0, it is generally difficult to classify faults and determine

their shift directions, making missed discoveries inevitable to

some degree. To better understand the nature of this issue, we

rewrite QOR(𝜆) as follows:

QOR(𝜆) =MDR(𝜹𝜆) =1−
EX

{∑m
i=1

∑
k=1,−1 I(𝛿𝜆i = k)Hk(Xi)

}
EX

[∑m
i=1

∑
k=1,−1 Hk(Xi)

]
= 1 −

EX
{∑m

i=1Hmax(Xi)I
[
Λi(Xi) ≥ 1∕𝜆

]}
EX

[∑m
i=1

∑
k=1,−1 Hk(Xi)

] .

It can be easily observed that, for any 𝜆

MDR(𝜹𝜆) ≥ 1 −
EX

[∑m
i=1Hmax(Xi)

]
EX

[∑m
i=1

∑
k=1,−1 Hk(Xi)

] ≜ LB > 0,

where LB = lim𝜆→∞ QOR(𝜆) is the lower bound of the MDR

of 𝜹𝜆. Intuitively, if the shift size is close to 0 (i.e., low SNR),

then the probabilities of 𝜃i = 1 and−1 given Xi would be simi-

lar, and H1(Xi) and H−1(Xi)would have similar values. In such

a situation, Hmax would be much smaller than H1 + H−1, and

LB would be large, indicating that if we choose an 𝛼 that is too

small, then it would be impossible to maintain the MDR at 𝛼.

As the shift size increases (i.e., higher SNR), H1 would devi-

ate widely from H−1 and LB would be close to 0, which gives

us more choices of 𝛼 for valid fault classification. Therefore,

with a very weak OC signal and a small 𝛼, we must collect

more OC observations than usual to control the MDR. Further

numerical examples are given in Section 4 for illustration.

The optimal threshold 𝜆∗ is often unavailable since the

MDR is unknown in practice, making the oracle decision rule

𝜹𝜆
∗

inoperable. Fortunately, under mild conditions, we can
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derive an asymptotically equivalent diagnostic procedure as

follows. First, we can estimate the MDR by the following

moment estimator:

M̂DR(𝜹𝜆) = 1 −
∑m

i=1Hmax(Xi)I(Λi(Xi) ≥ 1∕𝜆)∑m
i=1

∑
k=1,−1 Hk(Xi)

≜ 1 − B.

Thus, to ensure that M̂DR(𝜹𝜆) ≤ 𝛼, we need to verify that

B ≥ 1−𝛼. Denote by Γ the oracle statistics Λi(Xi)s in increas-

ing order: Γ =
{
Λ(1), … ,Λ(m)

}
. By substituting Γ into the

indicator functions in B, 𝜹𝜆
∗

can be approximated as follows.

Procedure 1 (Stepwise Oracle Procedure for

MDR-control, SOM). Rank Λi(Xi) in increasing

order to obtain Γ =
{
Λ(1), … ,Λ(m)

}
. Let

𝛾 = max

{
j ∶

∑m
i=jH

(i)
max∑m

i=1

∑
k=1,−1 Hk(Xi)

≥ 1 − 𝛼

}
.

Now we reject H0
(i) for i = 𝛾, … ,m, where H0

(i)

is the null hypothesis and H(i)
max has a one-to-one

correspondence with Λ(i). Then the shift direc-

tion is determined by deciding whether H(i)
max

equals H1 or H−1.

It can be checked that

Λ∗(Xi) ≜ 1

1 + Λi(Xi)

=
p0g(Xi|𝜃i = 0)

p0g(Xi|𝜃i = 0) + max {p1g(Xi|𝜃i = 1), p−1g(Xi|𝜃i = −1)}
is monotonically decreasing in Λi(Xi), and the equation can

be regarded as a novel generalization of the local FDR

(Efron, 2004)

Lfdr =
p0g(Xi|𝜃i = 0)

p0g(Xi|𝜃i = 0) + p1g(Xi|𝜃i = 1) + p−1g(Xi|𝜃i = −1)
.

Although the Lfdr has been widely applied in the literature to

interpret results for individual cases, it is nondirectional and

thus suboptimal for fault classification in the sense that the

positive and negative shifts are not considered separately, as

can be observed from the denominator of the Lfdr. In some

ways, Λ∗(Xi) (or Λi(Xi) equivalently) is a directional version

of the Lfdr which utilizes the directional information and the

idea of maximum likelihood ratio for directional decision.

Therefore, Λi(Xi) is more powerful and appropriate than the

Lfdr in the fault classification problem of HDDS.

Theorem 2 below shows that the SOM procedure is asymp-

totically valid and optimal for MDR-control.

Theorem 2 Under model (1), consider the
oracle statistics Hk(Xi) and Λi(Xi). Let 𝛾 =

max

{
j ∶

∑m
i=jH

(i)
max∑m

i=1

∑
k=1,−1 Hk(Xi)

≥ 1 − 𝛼

}
and 𝜹S ={

𝛿S
i , i = 1, … ,m

}
with

𝛿S
i =

⎧⎪⎨⎪⎩
k, if Λi(Xi) ≥ Λ(𝛾) and Hk(Xi) ≥ Hk′ (Xi) for

k, k′ = ±1, k ≠ k′.
0, Otherwise.

For any 𝛼 ≥ lim𝜆→∞QOR(𝜆), we have

i. MDR(𝜹S) = 𝛼 + o(1).
ii. EFP(𝜹S)∕EFP(𝜹𝜆∗ ) = 1 + o(1).

3.2 Data-driven diagnostic procedure

When developing SOM, it is assumed that the underlying

model (1) is completely known, and thus SOM cannot be

applied for practical purposes. To solve this problem, we now

propose a data-driven procedure for fault classification of

HDDS. In order to construct a data-driven procedure, a natu-

ral idea is to find appropriate estimates of Hk(Xi), k = 0,1,−1

to give plug-in estimators Ĥmax(Xi), Ĥ0(Xi) and Λ̂i(Xi). In what

follows, we discuss the estimation of the quantities in Hk(Xi)s
based on the OC sample mean X and give practical guidelines.

First, estimate ĝ(Xi) for the denominator of Hk(Xi), the

marginal density function g(Xi), can be obtained with con-

ventional kernel-based methods (Silverman, 1986). Now the

numerators of Hk(Xi)s need to be estimated. To estimate the

numerator of H0(Xi), it suffices to estimate the null propor-

tion p0, since g(Xi|𝜃i = 0) is the density function of standard

normal. A consistent estimate p̂0 for p0 can be obtained imme-

diately by using the estimation method proposed by Jin and

Cai (2007). Finally, for the estimation of the numerators of

H1(Xi) and H−1(Xi), pkg(Xi|𝜃i = k), k = ±1 must be esti-

mated. In general, we need to estimate pk and g(Xi|𝜃i = k) sep-

arately. Fortunately, we find after derivations that pkg(Xi|𝜃i =
k), k = ±1 can be written as

p1g(Xi|𝜃i = 1) = (1 − p0)∫
+∞

0

g(Xi|𝜃i ≠ 0, 𝜇)h(𝜇)d𝜇

and

p−1g(Xi|𝜃i = −1) = (1 − p0)∫
0

−∞
g(Xi|𝜃i ≠ 0, 𝜇)h(𝜇)d𝜇,

where

h(𝜇) =
p1

1 − p0

h1(𝜇) +
p−1

1 − p0

h2(𝜇)

is the density function of 𝜇i given 𝜃i ≠ 0. Therefore, in

order to estimate pkg(Xi|𝜃i = k), k = ±1, we only need to

estimate h(𝜇), and pkg(Xi|𝜃i = k) can be estimated by numer-

ical approximation of the integrals, since g(Xi|𝜃i ≠ 0, 𝜇)
is the density function of N(𝜇, 1). Such approach is easy to

implement and also of high accuracy. For estimating h(𝜇), the

deconvoluting kernel estimator (Sun & McLain, 2012) can be

used:

ĥ(𝜇) = 1

2𝜋(1 − p̂0)∫
∞

−∞
e−it𝜇

[
Ψ̂(t)∕Ψ𝜀(t) − p̂0

]
ΨK(𝜏t)dt,

(7)

where Ψ̂(t) is the empirical characteristic function of X, Ψ𝜀

and ΨK are the characteristic functions of the error distribu-

tion and a kernel K(t), respectively, and 𝜏 is the bandwidth

parameter. In practice, estimator (7) is often transformed into

max
{

0,ĥ(𝜇)
}

. In (7), it is important to choose the kernel

function K(t) properly. A related discussion has been provided
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by Delaigle and Hall (2006), who study kernel selection in

deconvolution problems systematically. In this paper, the sinc

kernel K(t) = (𝜋t)−1 sin t with ΨK(t) = I(|t| ≤ 1) is chosen

for the normal distribution. To estimate the bandwidth param-

eter 𝜏, we utilize the bandwidth selection method proposed

by Delaigle and Gijbels (2004), in which the bootstrap-based

approximated MISE of h is minimized. By using this band-

width selection method, the proposed data-driven procedure

roughly achieves the optimal performance as demonstrated by

our empirical results.

Now, given Ĥmax(Xi), Ĥ0(Xi) and Λ̂i(Xi), the data-driven

diagnostic procedure is given as follows. Its asymptotic valid-

ity and optimality for MDR-control are presented in Theorem

3 in the Online Appendix.

Procedure 2 (Stepwise Data-driven Proce-

dure for MDR-control, SDM). Rank Λ̂i(Xi) in

increasing order to obtain
{
Λ̂(1), … , Λ̂(m)

}
.

Let

𝛾 = max

{
j ∶

∑m
i=jĤ

(i)
max∑m

i=1

∑
k=1,−1 Ĥk(Xi)

≥ 1 − 𝛼

}
. (8)

Now we reject H0
(i) for i = 𝛾, … ,m, where H0

(i)

is the null hypothesis and Ĥ(i)
max has a one-to-one

correspondence with Λ̂(i). Then the shift direc-

tion is determined by deciding whether Ĥ(i)
max

equals Ĥ1 or Ĥ−1.

3.3 Extension to dependent data streams

The diagnostic procedures proposed in Sections 3.1–3.2 are

based on the independence assumption in the sense that the

data streams are assumed to be independent of each other,

that is, 𝚺 = Im×m in model (1). However, in real applications,

this assumption can be invalid, and between-stream correla-

tion exists. In this subsection, we further extend the proposed

diagnostic procedures to allow the data streams to be corre-

lated. In such a situation, the joint oracle statistics turn out to

be

Hki(X) = P(𝜃i = k|X) = g(X|𝜃i = k)P(𝜃i = k)∕g(X),
k = 0,1, − 1,

where g(X) is the joint p.d.f. of X and g(X|𝜃i = k) is the joint

p.d.f. given 𝜃i = k. Based on Hki(X), we can define Λi(X)
and then derive the joint oracle and data-driven procedures

for MDR-control similar to Procedures 1 and 2. Their theo-

retical validity and optimality for MDR-control can also be

established.

However, when the data streams are correlated, calculat-

ing the joint p.d.f.s, g(X|𝜃i = k) and g(X), is computationally

too expensive to afford. Specifically, the computational com-

plexity of calculating the oracle statistics Hki(X) is O(m2m).
Fortunately, in practice, information on the correlation struc-

ture is often known in advance. For instance, short-range

correlation structure has been widely applied to characterize

correlation between data streams in high-dimensional cases

(Xiang et al., 2019). In the literature, an effective and efficient

solution for handling certain weak between-stream correla-

tion structures is to neglect it, which can significantly speed

up computation without sacrificing performance much. For

example, Qiu et al. (2010) proposed a Phase II profile moni-

toring scheme that considers the heteroscedasticity of obser-

vations and ignores within-profile correlation. Similar ideas

can also be found in the longitudinal data analysis literature

(Lin & Carroll, 2000) and the multiple testing literature (Xie

et al., 2011). In our case, we can similarly prove that the pro-

posed marginal data-driven procedure SDM in Section 3.2 is

still valid and optimal asymptotically for MDR-control, which

is shown in Theorem 4 in the Online Appendix. More detailed

numerical investigation of the diagnostic performance under

correlation are given in Section 4.2. Section 6 also discusses

the generalization of SDM under more complicated correla-

tion structures.

4 SIMULATION STUDIES

In this part, we assess numerically the diagnostic per-

formance of the proposed stepwise oracle procedure for

MDR-control, SOM, and its data-driven version, SDM. There

are basically no comparable methods designed for fault clas-

sification of HDDS in the literature. It has been shown

by Li, Xiang, et al. (2020) that their proposed diagnostic

oracle/data-driven procedures MOW/MDW outperform other

conventional MSPC diagnostic procedures. Therefore, we

modify the MOW and MDW procedures so that they can be

applied for the fault classification of HDDS. To be more spe-

cific, after the diagnostic step in which the MOW and MDW

procedures isolate the OC data streams, the shift directions of

these OC data streams are simply determined from the signs

of the observations.

We set 𝛼 = 0.1 for all the considered methods, which is

reasonable in practice. The simulation results for other 𝛼 are

similar, and thus are omitted to save space. After 𝝁 and 𝜽

are generated, the actual MDR and EFP values of the diag-

nostic procedures are obtained from 1000 replications. Then

we repeat the whole process, from fixing 𝝁 and 𝜽 to obtain-

ing the MDR and EFP values, 100 times, after which we can

obtain the mean values of the MDR and EFP. Specifically, in

Section 4.1, we investigate the performance of the considered

procedures when model (1) is true and the data streams are

independent of each other. In Section 4.2, we consider cases

when between-stream correlation exists. Section 4.3 studies

the impact of m. Finally, we investigate the robustness of

the procedures when the normality assumption is violated in

Section 4.4.

4.1 I.I.D. normal cases

In this part, we investigate the effectiveness and robustness of

the proposed diagnostic procedures under the normal mixture



XIANG ET AL. 979

FIGURE 1 Diagnostic results of the i.i.d. normal cases for SOM ( ), SDM ( ), MOW ( ), and MDW ( ). The MDR and EFP levels are respectively shown

in the top and bottom rows. The scenarios are at the top of the columns

FIGURE 2 EFP levels of the four diagnostic procedures after MDR adjustment
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FIGURE 3 Diagnostic results of Case 1 for SOM ( ), SDM ( ), MOW ( ), and MDW ( ). The MDR and EFP levels are respectively shown in the top and

bottom rows. The scenarios are at the top of the columns

model (1) and when the data streams are independent. We fix

m = 1000 and p0 = 0.75, and consider the following three

scenarios:

• Symmetric OC shift sizes and proportions

(SSSP): h1(𝜇i) = h2(−𝜇i) = Gam(2,0.05,0.5)
and p1 = p−1 = 0.125, where Gam(A1,B1,

C1) denotes the gamma distribution with

shape parameter A1, location parameter B1

and scale parameter C1.

• Symmetric OC shift sizes (SSS): h1(𝜇i) = h2

(−𝜇i) = Gam(2,0.05,0.5), p1 = 0.1 and p−1

= 0.15.

• Symmetric OC proportions (SP): h1(𝜇i) =
Gam(3,0.05,0.5), h2(−𝜇i) = Gam(2,0.05,0.5)
and p1 = p−1 = 0.125.

In Scenario SSSP, the OC shift sizes and proportions both

have a symmetric structure, while only one of them is sym-

metric in Scenarios SSS and SP. The simulation results are

displayed in Figure 1. For demonstration purposes, we plot

the MDR and EFP as functions of the number of OC obser-

vations, n, where n changes among 1, 2, 5, 10, 15, and 20.

Note that the scale on the y-axis of the EFP plots is in nat-

ural logarithm, to better demonstrate the difference among

procedures.

From the plots, we can observe that when n is very small,

none of the four procedures can control the MDR at 0.1, but

the proposed SOM and SDM procedures have much smaller

MDR values than MOW and MDW do. This also validates the

discussion in Section 3.1 that we cannot control the MDR with

a low SNR and a small 𝛼. The MDR values of SOM and SDM

converge to 0.1 rapidly as n increases, while neither MOW

nor MDW are valid until n is very large (e.g., n = 20). After

the convergence, SOM and SDM are both valid, and the EFP

values of SDM are slightly larger than these of SOM, imply-

ing that the performance of SOM is asymptotically attained

by SDM. By contrast, in cases when the MDR levels of MOW

and MDW are very close to 0.1, their EFP levels are signifi-

cantly larger than those of SOM and SDM, respectively. This

shows the sub-optimality of the MOW and MDW procedures

for the fault classification problem of HDDS.

In order to see more thoroughly the advantages of the pro-

posed diagnostic procedures, we artificially adjust the actual

MDR levels of SOM and SDM to be the same as those of

MOW and MDW, respectively, and the EFP levels after the

adjustment are displayed in Figure 2. Note that the oracle

and data-driven procedures are compared separately. From

the plots, we can observe that SOM and SDM significantly

outperform MOW and MDW, respectively. The differences

become more substantial as n gets larger. Therefore, after

taking into account its computational advantage, we believe

that the SDM procedure provides an effective tool for fault

classification of HDDS.

4.2 Impact of between-stream correlation

In this part, we consider the cases when between-stream cor-

relation exists. Specifically, we choose the following two
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FIGURE 4 Diagnostic results of Case 2 for SOM ( ), SDM ( ), MOW ( ), and MDW ( ). The MDR and EFP levels are respectively shown in the top and

bottom rows. The scenarios are at the top of the columns

representative correlation structures:

Case 1 𝚺 is block-diagonal. The block size is

equal to b = 10 with the diagonal elements of

1 and the off-diagonal elements of 0.3 in each

block.

Case 2 𝚺 = (σij)m×m = 𝜌|i−j| with 𝜌 = 0.5.

Case 1 is a short-range correlation structure, and the mag-

nitude of correlation in Case 2 decays as the position moves

away from the diagonal. The other settings are identical to

those in Section 4.1. Then the OC observations can be gener-

ated under model (1). The diagnostic results of Cases 1 and 2

are summarized and displayed in Figures 3 and 4, respectively.

From the plots, similar conclusions can be drawn: the SOM

procedure performs the best among the other three proce-

dures, indicating its validity and optimality for MDR-control.

Also, the performance of the SOM procedure is asymptoti-

cally attained by the SDM procedure, and SOM and SDM

outperform MOW and MDW, respectively.

Next, we study in more detail the impact of correlation on

the diagnostic performance of the proposed procedures SOM

and SDM. To this end, we consider the block-diagonal covari-

ance matrix in Case 1 with b changing among 0, 10, 100

and 500, and the covariance matrix in Case 2 with 𝜌 chang-

ing among 0, 0.1, 0.5 and 0.9. To facilitate presentation, only

the SP scenario is displayed, and the results of the other two

scenarios are similar based on our empirical results. The sim-

ulation results are displayed in Figure 5. From the plots, we

could draw the following conclusions. First, SOM has strong

robustness against various degrees of correlation in the sense

that the MDR and EFP values are very similar under differ-

ent values of b or 𝜌. This should not be surprising, since the

marginal distributional information is completely known for

SOM regardless of the correlation structure. Second, in cases

when weak correlation exists (i.e., b ≤ 10 or 𝜌 ≤ 0.5), it can

be observed that SDM performs satisfactorily, as the MDR

values are controlled at 0.1, and the EFP values are similar

to these when the data streams are independent (i.e., b = 0

or 𝜌 = 0). These findings are consistent with the theoreti-

cal results established in Section 3. Third, in cases when the

correlation is strong (i.e., b ≥ 100 or 𝜌 > 0.5), it can be

observed that SDM is still valid for directional MDR-control,

as the MDR level converges to 0.1 as n gets larger. However,

the EFP values are much larger than those of the independent

and weak correlated cases, indicating that the effectiveness

of SDM is seriously affected by the strong correlation. The

main reason may be that it is extremely difficult to precisely

estimate the marginal distributional information under such

strong correlation.

Finally, it can be concluded that the proposed diagnos-

tic procedures SOM and SDM are still very effective under

certain weak or short-range correlation structures. When the

correlation is extremely strong or long-range, the effective-

ness of SOM and SDM may be seriously affected. In such
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FIGURE 5 Diagnostic performance of SOM (the first column) and SDM (the second column) under various degrees of correlation. The first two rows are

the MDR and EFP values with b changing among 0, 10, 100, and 500, and the second two rows are the MDR and EFP values with 𝜌 changing among 0, 0.1,

0.5, and 0.9

cases, more general and effective diagnostic procedures are

desirable to take into consideration the correlation properly

to facilitate decision making. See also Section 6 for more

discussions.

4.3 Impact of dimensionality

Based on the theoretical results in Section 3, we can conclude

that the performance of the proposed SOM and SDM proce-

dures would depend on the dimensionality, m through the o(1)
terms in the theorems in Section 3. Intuitively, provided that m
is sufficiently large, our procedures can work satisfactorily. In

this subsection, such potential impact is studied numerically.

We let m change among 500, 1000, and 2000, and consider

the short-range correlation structure (Case 1 in Section 4.2)

and the SP scenario. The diagnostic performance of SOM and

SDM are displayed in Figure 6. For demonstration, all the EFP

values are divided by the dimensionality m.

From the plots, the following conclusions can be drawn:

(i) The SOM and SDM procedures are both valid for

MDR-control for all choices of m as their MDR levels con-

verge to 𝛼 when n increases, (ii) the diagnostic performance

of both SOM and SDM would improve when m increases as

the EFP level tends to be smaller. The improvement of SDM

is more significant, mainly because that it is hard to estimate

the parameters accurately when m is small, (iii) the diagnostic

performance stabilizes when m ≥ 1000, and the improvement

can almost be ignored. This numerical example shows that the
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FIGURE 6 Diagnostic performance of SOM (the first column) and SDM (the second column) with m changing among 500, 1000, and 2000. The MDR and

EFP levels are respectively shown in the top and bottom rows

proposed SOM and SDM procedures perform stably as the

dimensionality is as large as 1000.

4.4 Impact of non-normality

The foregoing numerical examples are all based on model

(1) with the assumption of normality. In this subsection, we

study the performance of the procedures without the normal-

ity assumption. As discussed in Section 2, provided that n
is not too small, the distribution of Xis should be asymptot-

ically normal. In such cases, procedures derived under the

normality assumption should still work well. To verify this,

we consider the following two non-normal distributions: t3
and Gam(2,0,1). For simplicity, only the i.i.d. case with the SP

scenario is considered, as the results for other cases are simi-

lar. The observations are standardized with standard deviation

of one. All the other settings are the same as those in Figure 1.

For instance, the t distribution can be written as:

XOC
j |𝝁,𝜽 ∼ t3(Im×m) + 𝝁

𝜇i|𝜃i ∼ (1 − 𝜃i)𝛿0(𝜇i) + I(𝜃i = 1)h1(𝜇i) + I(𝜃i = −1)h2(𝜇i)

𝜃i
i.i.d∼ Multinoulli (p0, p1, p−1),

∑
k=0,1,−1

pk = 1.

The simulation results of the four diagnostic procedures are

summarized in Figure 7. From the plots, similar conclusions

can be drawn as follows. The SOM procedure is always valid

provided that n is not too small. The diagnostic performance

of SDM is quite similar to that of SOM. MOW and MDW can-

not control the MDR until n is large (e.g., n ≥ 15). After the

convergence, the EFP levels of MOW and MDW are signifi-

cantly higher than those of SOM and SDM, respectively. Now,

we can conclude that the proposed SOM and SDM procedures

are still efficient without the assumption of normality.

5 REAL-DATA ANALYSIS

In this section, we demonstrate the proposed data-driven pro-

cedure SDM by using a real-world dataset from the semicon-

ductor manufacturing process (SMP). The dataset is available

from the UCI Machine Learning Repository (http://archive.

ics.uci.edu), and was automatically recorded by a computer

system that manages the entire SMP from producer requests

to laboratory analysis. It contains in total 1567 observa-

tion vectors, including 1463 conforming observations and

104 nonconforming observations. In each observation vector,

the data dimension is 590, that is, there are 590 continuous

measurements. For demonstration, we regard the 1463 con-

forming observations as the IC historical dataset and the 104

nonconforming observations as the collected OC data for fault

classification.

First of all, exploratory data analysis is necessary. We begin

by handling data streams that remain unchanged over time

and those with missing data. After removing the constant

or extremely discrete data streams, m = 453 data streams

http://archive.ics.uci.edu
http://archive.ics.uci.edu
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FIGURE 7 Diagnostic results of the t (the first column) and gamma (the second column) distributions for SOM ( ), SDM ( ), MOW ( ), and MDW ( ).

The MDR and EFP levels are respectively shown in the top and bottom rows

remain for further data analysis. Besides, we have found

that the proportion of missing data is insignificant. Thus,

we use the simple yet efficient mean imputation method to

handle missing values. Then the Shapiro–Wilks GOF test is

conducted, and the result implies that the distributions of

many data streams are not normal. An inverse transformation,

Φ−1(F̂k(Xkt)), k = 1, … ,m is then implemented to approxi-

mately ensure the validity of the model assumption, where F̂k

is the empirical c.d.f. of the kth data stream obtained from the

1463 IC observations and Xkt is the observed value of the kth

data stream at time point t. We also calculate the sample corre-

lation matrix and find that among the 102 378 lower triangular

elements, there are 1098 elements with absolute values larger

than 0.3, which is similar to the case of 𝚺 = (σij) = 0.4|i−j|.
Therefore, we may conclude that a certain weak correlation

structure exists.

To implement SDM, we still need to estimate important

parameters in model (1), including the null proportion p0,

the p.d.f. of the shift size h(𝜇) and the marginal p.d.f. g(x).
First, we estimate p0. Since the theoretical null marginal

distribution is standard normal, we directly apply the method

of Jin and Cai (2007) to estimate p0. The corresponding

estimate is denoted by p̂0, and the estimation results are sum-

marized in Table 2, from which it can be observed that p̂0

becomes stable at around 0.6 as n gets larger. With p̂0, we

TABLE 2 Estimated null proportion with various choices of n

n 10 30 60 90 104

p̂0 0.66 0.64 0.58 0.60 0.61

FIGURE 8 Illustration of ĝ(x) and ĥ(𝜇)

can estimate h(⋅) using the deconvoluting kernel estimator (7)

discussed in Section 3.2. The resulting estimate is denoted

by ĥ(𝜇). We also estimate g(x) by the classic kernel density

estimate ĝ(x). For illustration, Figure 8 displays ĥ(𝜇) and ĝ(x)
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FIGURE 9 Diagnostic results of SDM with 𝛼 = 0.1 for the semiconductor manufacturing data

for cases when n = 104. It can be seen that both positive and

negative shifts exist, and OC shifts focus on 𝜇 ∈ (0,0.5).
Now, we artificially use the nonconforming observations

for fault classification, and apply the proposed SDM proce-

dure to identify the OC data streams and determine the shift

direction. Note that unlike simulation studies, it makes little

sense to compare the diagnostic performance of SDM with

its competitors in real-data analysis, since the actual MDR

and EFP levels of the methods are unknown. Therefore, we

only consider SDM here. With p̂0, ĥ(𝜇) and ĝ(x) discussed

above, we can obtain Ĥmax(Xi), Ĥ0(Xi) and Λ̂i(Xi) and imple-

ment SDM immediately. The diagnostic result of SDM with

𝛼 = 0.1 is displayed in Figure 9, in which 298 data streams are

deemed as OC. It can be expected that these streams includes

90% of the true OC streams with the right directions and few

IC streams.

Before concluding, Figure 9 reveals something intriguing.

It is well known in the field of multiple testing that apply-

ing the Lfdr-based procedure may cause observations located

farther from the null distribution to be less significant than

observations located closer to the null distribution when the

non-null distribution is asymmetric about the null (Sun &

Cai, 2007). Such a phenomenon can also be seen in Figure 9,

in which more extreme observations may be accepted while

less extreme observations may be rejected, and the upper

rejection boundary is much closer to zero than the lower rejec-

tion boundary, leading to asymmetric rejection boundaries.

The main reason is that ĥ(𝜇) is large when 𝜇 ∈ (0,0.5), and

thus SDM gives a higher priority to the observations in this

interval.

6 CONCLUDING REMARKS

In this article, we pioneer a novel formulation of the

fault classification problem of HDDS on the basis of a

three-classification multiple-testing framework. Based on

a general parametric mixture model, an oracle diagnos-

tic procedure for MDR-control and its data-driven version

are proposed for finding the subset with the smallest EFP

while controlling the MDR at given level 𝛼. The proposed

data-driven procedure, SDM, is theoretically optimal, and

computationally and statistically efficient. It enables more

precise fault classification, and provides insights guiding fur-

ther decisions, making it appealing in practice.

Many important issues remain that need to be solved.

First, it is assumed in this paper that the change-point is

detected correctly based on certain SPC methods (Pignatiello

& Samuel, 2001; Zamba & Hawkins, 2006; Zou et al., 2007).

However, in reality, the detected change-point may be inac-

curate, or change-point detection may be coupled with fault

classification. Greater research effort should be made on the

whole post-signal process (including change-point detection

and fault classification). Second, the proposed diagnostic pro-

cedure is designed only for OC mean shifts. In future research,

a diagnostic procedure for OC variance–covariance shifts can

be designed accordingly. Third, the proposed diagnostic pro-

cedure for MDR-control is designed from the perspective

of mathematical expectation. However, the missed discovery

percentage for a single execution may not be well controlled.

It would be useful to develop a diagnostic procedure to

ensure a high probability that the missed discovery percent-

age for each single execution is at least equal to a certain

acceptable value. We leave this to future research. Fourth,

the performance of the marginal procedure SDM may be

affected seriously when the correlation is extremely strong or

long-range. Therefore, diagnostic procedures that can effec-

tively and efficiently utilize the correlation information must

be developed in such cases. Finally, in many real world appli-

cations, the loss of missing a fault is likely different from

the loss of missing its direction. It is important for us to
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systematically investigate how to deal with both types of loss

in the future.
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