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Directional PCA for Fast Detection and Accurate
Diagnosis: A Unified Framework
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Abstract—Many methods for monitoring multivariate
processes are built on principal component analysis (PCA),
which, however, simply tells whether the process is faulty or
not. In fact, there is still room for the improvement of the early
detection performance by exploiting fully the information given
by fault directions. To this end, this article proposes a novel
directional PCA (diPCA) approach. First, by narrowing down
faults to a specified direction or composite mutually orthogonal
directions, diPCA can speed fault detection and facilitate
accurate fault diagnosis. It also has good theoretical properties
that guarantee concise control limits. Second, with appropriate
fault directions, diPCA provides a unified framework for process
monitoring and includes existing monitoring indices, such as
Hotelling’s T2 and the squared prediction error (SPE), as special
cases. Third, diPCA also naturally results in a new combined
monitoring statistic, which is composed of both T2 and SPE,
and provides an optimal ratio of their combination. The Monte
Carlo simulation results have demonstrated the power of the
proposed monitoring and diagnostic methods stemming from
diPCA. The proposed methods have also been implemented into
the Tennessee Eastman process.

Index Terms—Composite hypothesis, fault direction, likeli-
hood ratio test (LRT), normalization, probabilistic principal
component analysis (PCA) model.

I. INTRODUCTION

W ITH THE explosion in the use of sensors, data-driven
process monitoring and diagnostic approaches are pre-

vailing in complex industrial processes because they are easy
to implement and highly efficient. By exploiting information
in the collected data effectively, they can detect and identify
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process faults and are, therefore, critical to process stabil-
ity. Among various techniques, many principal component
analysis (PCA)-based methods have been developed for fault
detection and diagnosis [1]–[3], as well as for condition mon-
itoring [4]–[6]. PCA preserves the most information about
variability in the original high-dimensional data in the princi-
pal component subspace, and the residual subspace mainly
comprises noise [7], [8]. In the two orthogonal subspaces,
Hotelling’s T2 statistic and the squared prediction error (also
known as Q) are established. There are also indices that com-
bine T2 and Q in some manner, which are preferable to using
T2 or Q separately. See [9]–[13] for detailed overviews.

Many PCA-based detection approaches simply indicate
whether the process is faulty or not, but there is still room to
improve the performance for early detection. The performance
is measured by the average run length (ARL), which is the
average number of samples before an alarm is triggered online.
Given the Type I error probability α, a smaller ARL indicates
better performance by a method, that is, it detects a fault ear-
lier or faster than other approaches. The motivation of this
article is to improve the detection performance of PCA-based
approaches by exploiting the information in fault directions
fully, leading to directional PCA (diPCA). Conventional PCA
fails to consider such directional information, whereas diPCA
assumes the fault lies in one of the mutually orthogonal direc-
tions, which is common in practice. Therefore, diPCA focuses
on faults in these directions, thereby enabling greater detection
power.

Directional information has been considered previously in
fault diagnosis. Alcala and Qin [14] proposed a reconstruction-
based contribution (RBC) approach for fault diagnosis. The
RBC method calculates an RBC index for single-sensor faults
in each possible direction, and the direction with the largest
index is considered to be faulty. In [14], the Monte Carlo sim-
ulations and rigorous diagnosability analysis were performed
to demonstrate that this RBC approach has much better diag-
nostic performance than conventional contribution plots [15]
that have a smearing effect leading to misdiagnosis [9]. In
addition to the linear models considered, in [16], the RBC
method was also extended to nonlinear principal component
models by incorporating kernel PCA.

However, incorporating fault directions into PCA-based
monitoring statistics poses a challenge, which is challeng-
ing compared to the RBC method for diagnosis. Furthermore,
there are drawbacks to conventional PCA-based monitor-
ing indices. For instance, some combined monitoring indices
of T2 and Q contain extra parameters that are yet to be
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determined, such as the significance level α in the com-
bined index proposed by Yue and Qin [17] and α and c in
the combined statistic in [18]. Different values of α and c
lead to different detection performances. Another example is
the control limit of the Q statistic proposed by Jackson and
Mudholkar [19], which is widely used but difficult to calculate.
The same can also be said for that of the combined statistic
in [17].

In order to exploit directional information about faults suffi-
ciently, here process monitoring is formulated as a hypothesis
testing problem. Some works have also combined PCA with
hypothesis testing [20], [21], but fault directions were not con-
sidered. In fact, various patterns of fault directions can be
incorporated in the alternative hypotheses, which have suffi-
cient flexibility, and a statistic for detecting faults with such
directions can be further derived.

Based on hypothesis testing, the next step is to find a prob-
ability model that is related to PCA and allows the testing
of such hypotheses. Fortunately, probabilistic PCA (PPCA)
provides such a probability model. PPCA was proposed by
Tipping and Bishop [22], which focused on the maximum-
likelihood estimation and statistical properties of PPCA. This
work is the basis of other papers that utilize PPCA for
fault detection and diagnosis, including [23]–[25]. Please be
reminded that there is a lack of an associate probabilistic
model for the observed data in conventional PCA. Instead,
PPCA relates the observed data to a Gaussian latent vari-
able model, and the principal subspace can be determined by
maximum-likelihood estimation of parameters in the PPCA
model. Furthermore, the likelihood ratio test (LRT) statistic
can be derived to test whether the process is faulty, where the
hypothesis involves a specified fault direction or composite
mutually orthogonal fault directions.

This article does not follow [23]–[25], which first estimates
the posterior mean and covariance matrix of the latent vec-
tor based on the observed data in a Bayesian manner, and
then constructs corresponding T2-type and Q-type statistics
separately using these posterior estimates. Instead, like [26],
this article operates in a frequentist way and integrates the
latent vector out. By including fault directions in the hypothe-
sis, the LRT for the PPCA model leads to diPCA for process
monitoring.

This article will make the following three specific contribu-
tions. First, by narrowing down faults to a specified direction
or composite mutually orthogonal directions, diPCA can speed
fault detection and facilitate accurate fault diagnosis. Second,
with appropriate fault directions, diPCA provides a unified
framework for process monitoring and includes existing mon-
itoring indices, such as T2 and Q, as special cases. Third,
diPCA also naturally results in a new combined monitoring
statistic W composed of both T2 and Q simultaneously, free
from extra parameters. This W also provides an optimal ratio
of T2 and Q of their combination. In addition, diPCA has nice
theoretical properties, which guarantee concise control limits
of both Q and W.

The remaining sections are organized as follows. Section II
briefly summarizes conventional PCA-based methods and
introduces the PPCA model. Section III elaborates on diPCA

and composite diPCA (cdiPCA) for process monitoring, as
well as the resulting accurate diagnostic scheme. Section IV
investigates the performance of the proposed approaches for
process monitoring and diagnosis, which is measured by ARLs
and matching rates, respectively. Section V illustrates the
implementation of the proposed schemes into the well-known
Tennessee Eastman (TE) process, and Section VI concludes
this article.

II. PROBABILISTIC PCA

A. Conventional Process Monitoring via PCA

PCA is a powerful dimension reduction technique that
preserves the most variability information in original high-
dimensional data. Given the off-line dataset collected in the
normal operating condition, the observation vectors, each of
dimension p, are scaled to zero mean and unit variance. Denote
the covariance matrix of the dataset by �. The PCA-based pro-
cess monitoring methods require the eigenvalue decomposition
of �, which is

� = [
U, Ũ

]
�
[
U, Ũ

]T
. (1)

Here, the p×p matrix [U, Ũ] is the loading matrix, containing
the columnwise eigenvectors of �, and

� = diag
{
λ1, . . . , λq, λq+1, . . . , λp

}
(2)

is a diagonal matrix with the eigenvalues of � as its diagonal
elements in descending order, that is, λ1 ≥ · · · ≥ λp > 0.
Moreover

U = [
u1, . . . , uq

]
and Ũ = [

uq+1, . . . , up
]

(3)

consist of the eigenvectors, with the eigenvector uj correspond-
ing to λj. Here, q is the number of principal components
determined by some criteria in [13], such as the cumulative
percentage of variance (CPV).

For a new observation vector x of dimension p, let

�q = diag
{
λ1, . . . , λq

}
(4)

and the Hotelling’s T2 statistic and Q statistic are

T2 = xTU�−1
q UTx (5)

Q = xT ŨŨ
T

x. (6)

Unlike T2, the Q statistic does not involve the eigenval-
ues λq+1, . . . , λp corresponding to Ũ. In fact, Ũ determines
the residual subspace, which usually has little variability
information and mainly contains noise. Therefore, the last p−q
eigenvalues are usually very small or near zero compared to
the leading q eigenvalues, and their inverses often lead to large
biases due to the estimation inaccuracy of matrix � [9].

In process monitoring, one usual detection scheme is to see
whether at least one of T2 and Q exceeds their correspond-
ing control limits Jα,T2 and Jα,Q, respectively, where α is the
significance level. Since in the normal case, T2 follows asymp-
totically the chi-square distribution with q degrees of freedom
(d.f.), χ2

q , Jα,T2 is the (1 − α)-quantile of χ2
q . In addition,

Jackson and Mudholkar [19] provided an expression of Jα,Q.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 07,2021 at 17:03:16 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: diPCA FOR FAST DETECTION AND ACCURATE DIAGNOSIS 3

If both T2 and Q are within their control limits, it is fault-
free. Otherwise, it is faulty. This joint monitoring approach is
hereafter referred to as T2-Q.

One can also employ a combined index [17]

T2

Jα,T2
+ Q

Jα,Q
(7)

for process monitoring, which is the sum of T2 and Q
divided by their α-level thresholds, respectively. This method
is referred to as “combined.”

B. Probabilistic PCA Model

To improve the detection power of PCA-based process mon-
itoring methods, as suggested in the introduction, here, the
PPCA model proposed by Tipping and Bishop [22] is intro-
duced to incorporate various fault directions into hypothesis
testing. The PPCA model assumes a group of latent variables
of the observed high-dimensional variables. To be specific, in
the normal case, the observed vector x is determined by

x = Az + ε with z ∼ N
(
0; Iq

)
and ε ∼ N

(
0; σ Ip

)
(8)

where z is the latent factor vector of dimension q < p, indepen-
dently subject to a multivariate normal distribution with zero
mean and unit variance, and the p × q link matrix A relates x
to z. In addition, ε is the p × 1 measurement or sensor error
vector subject to a multivariate normal distribution, indepen-
dently with zero mean and identical variance σ > 0. With
q < p, the latent vector z provides a parsimonious explanation
of the dependence between the high-dimensional vector x. By
integrating z out, the distribution of x can be finally derived as

N
(
0; AAT + σ Ip

)
(9)

that is, the multivariate normal distribution with zero mean
and covariance matrix AAT + σ Ip.

The parameters of the PPCA model can be estimated using
maximum-likelihood estimation. According to [22], A and σ

are estimated as

A = U
(
�q − σ Iq

)1/2R (10)

σ = 1

p − q

p∑

j=q+1

λj = tr(�) −∑q
j=1 λj

p − q
(11)

where q, U, �q, and λi (i = 1, . . . , p) are all associated with
the eigenvalue decomposition of � expressed in (1), and R of
dimension q × q is an arbitrary orthogonal rotation matrix.

III. DIRECTIONAL PCA FOR PROCESSING MONITORING

AND DIAGNOSIS

A. Directional PCA

The PPCA model is based on a probability distribution,
which allows the use of some statistical tests for process mon-
itoring. The likelihood ratio test is flexible and powerful when
comparing the goodness-of-fit of two statistical models: 1) a
null model and 2) an alternative one. Therefore, it can be
employed to detect whether the process is normal or faulty.

When a fault occurs, say fault i, the faulty observation vector
can be expressed as

x = x∗ + �ifi. (12)

Here, x∗ is an observation vector in the normal case, �i of
dimension p × ri (ri ≤ p) is the fault direction matrix with
orthogonal columns satisfying �T

i �i = Iri and spanning the
fault subspace, and vector fi represents the fault magnitude.
In the context of LRT, let μ be the mean vector of observa-
tion vectors, the fault detection problem can be formulated by
testing the following hypothesis:

H0 : μ = 0 versus H1 : μ = �ifi. (13)

Assume that the fault direction matrix �i is known. Given
the PPCA model, the observation vector x is subject to the
multivariate normal distribution with mean vector �ifi and
covariance matrix �, namely, N(�ifi;�). Thus, the probability
density function (PDF) of x, that is, p(x|fi), or equivalently,
the likelihood function L(fi|x) can be written from the PDF
of the multivariate normal distribution as

p(x|fi) = L(fi|x)

= 1√
(2π)p|�| exp

(
−1

2
(x − �ifi)

T�−1(x − �ifi)

)

(14)

with

� = AAT + σ Ip = U�qUT + σ
(
Ip − UUT). (15)

Note that � is not necessarily identical to � in (1). In fact, � is
the calculated covariance matrix based on the off-line dataset,
whereas � is the normal-case covariance matrix associated
with the PPCA model (8).

By maximizing ln L(fi|x), the maximum-likelihood estimate
of fi is

f̂i =
(
�i

T�−1�i

)−1
�i

T�−1x. (16)

The LRT first computes the maximum-likelihood functions
under the null and alternative hypotheses, which are L(0|x)

and L(̂fi|x), respectively. It then takes their ratio, denoted by
λ, and uses −2 ln λ as the test statistic, which is

Ri = −2 ln
L(0|x)

L
(̂
fi|x
)

= xT�−1�i

(
�i

T�−1�i

)−1
�i

T�−1x. (17)

This Ri is the directional PCA or diPCA monitoring statistic.
Note that
[
U, Ũ

][
U, Ũ

]T = UUT + ŨŨ
T = Ip (18)

�−1 = (
AAT + σ Ip

)−1 = 1

σ

(
Ip − A

(
ATA + σ Iq

)−1
AT
)
.

(19)

Combined with (10), there is

�−1 = U�−1
q UT + 1

σ

(
Ip − UUT). (20)

By noting (20), T2 in (5), and Q in (6), it turns out that many
known monitoring statistics are special cases of the diPCA
statistic (17) with appropriate choices of the fault direction
matrix �i. To be specific,

1) with �i = U, indicating that faults have occurred in the
principal component subspace, the statistic (17) becomes
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Hotelling’s T2 statistic, specialized for detecting process
faults;

2) with �i = Ũ, indicating that faults have occurred in
the residual subspace, the statistic (17) becomes the Q
statistic up to a multiplier 1/σ ;

3) with �i = Ip, indicating general faults,
the statistic (17) becomes a new combined
index

W = xT�−1x = T2 + 1

σ
Q. (21)

Unlike the conventional combined index (7) that still relies
on the choice of an extra parameter α, such as α in Jα,T2 ,
this LRT-based combined index (21) is a natural and unique
result of LRT, with theoretically sound foundations. By noting
the two coefficients associated with T2 and Q in (21) are 1
and (1/σ), respectively, in proportion to σ :1, the LRT actu-
ally tells us that in combining the two statistics T2 and Q, an
optimal proportion between them is σ :1, where σ is calcu-
lated based on (11), the average of the remaining eigenvalues
λq+1, . . . , λp. The T2

c statistic in [23, eq. (23)] is actually
the combined index (21), but [23] does not reveal that T2

c
is the combination of T2 and Q, unfortunately. In [27], T2

and (1/σ)Q were also derived from the PPCA model in a
different way, but they were not added to form a combined
statistic. Hereafter, the monitoring approach in (21) is referred
to as “PPCA,” since it is derived from the PPCA model with
�i = Ip.

By denoting

t = [
U, Ũ

]T
x (22)

in a similar manner to [9], T2, (1/σ)Q, the combined
statistic in (7), the Mahalanobis distance (the global
Hotelling’s T2)

D2 = xT�−1x (23)

in [9], and the PPCA statistic in (21) can be summarized as
the quadratic form tT�t, with

� =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

diag

⎧
⎪⎨

⎪⎩
λ−1

1 , . . . , λ−1
q , 0, . . . , 0︸ ︷︷ ︸

p−q

⎫
⎪⎬

⎪⎭
, for T2

diag

⎧
⎪⎨

⎪⎩
0, . . . , 0︸ ︷︷ ︸

q

, σ−1, . . . , σ−1
︸ ︷︷ ︸

p−q

⎫
⎪⎬

⎪⎭
, for 1

σ
Q

diag

⎧
⎪⎪⎨

⎪⎪⎩
λ−1

1 J−1
α,T2 , . . . , λ

−1
q J−1

α,T2 ,

J−1
α,Q, . . . , J−1

α,T2
︸ ︷︷ ︸

p−q

⎫
⎪⎪⎬

⎪⎪⎭
, for combined

diag
{
λ−1

1 , . . . , λ−1
q , λ−1

q+1, . . . , λ
−1
p

}
, for D2

diag

⎧
⎪⎨

⎪⎩
λ−1

1 , . . . , λ−1
q , σ−1, . . . , σ−1

︸ ︷︷ ︸
p−q

⎫
⎪⎬

⎪⎭
, for PPCA.

(24)

In particular, the Mahalanobis distance statistic D2 in (23)
involves the inverses of the remaining very small eigenvalues
λq+1, . . . , λp, and the estimation inaccuracy of λq+1, . . . , λp

leads to large biases in λ−1
q+1, . . . , λ

−1
p . The PPCA monitoring

statistic, however, replaces these near-zero eigenvalues with
their average, which is σ calculated from (11). Based on (11),
it can be seen that σ actually only relies on the q leading
eigenvalues λ1, . . . , λq, which avoids λ−1

q+1, . . . , λ
−1
p in D2, so

the estimation accuracy of σ can be guaranteed. Therefore,
compared with D2, the PPCA monitoring statistic can be used
as a combined index with ease.

Furthermore, according to [28, Th. 10.3.3], in the normal
operating condition, the quadratic form Ri in (17) follows
asymptotically the chi-square distribution χ2

ri
with ri degrees

of freedom (d.f.), where ri is the rank of the fault direction
matrix �i. This naturally leads to Theorem 1, and its detailed
proof can be found in the Appendix.

Theorem 1: In the normal case, (1/σ)Q and the PPCA mon-
itoring index W in (21) follow asymptotically the chi-square
distributions χ2

p−q with d.f. = p − q and χ2
p with d.f. = p,

respectively.
As in Theorem 1, T2 follows asymptotically the chi-square

distribution χ2
q . In fact, Jackson and Mudholkar [19] provided

a theoretical control limit of Q, which, however, has a rather
complex form. Compared to it, Theorem 1 here leads to a
control limit of Q with a fairly concise form based on χ2

p−q.

B. Composite Directional PCA

Hypothesis (13) assumes that the fault direction matrix �i

is known, and the monitoring statistic (17), which is developed
from hypothesis (13), can be used for fault detection. But in
reality, this is not always the case. The fault may come from
another subspace spanned by the columns of matrix �j of
dimension p × rj, which has orthogonal columns satisfying
�T

j �j = Irj and �T
j �i = 0 (j �= i). In general, the fault may

be in one of the several mutually orthogonal subspaces formed
by the columns of matrices �i (i ∈ F), respectively, where F
is the fault set. Therefore, the fault detection problem can be
formulated as testing the composite hypothesis

H0 : μ = 0 versus H1 :
∨

i∈F
μ = �ifi. (25)

Here, ∨ represents the “XOR” (exclusive or) operation, imply-
ing that only one of μ = �ifi (i ∈ F) is true. By the
matrix theory, the entire fault space can always be decom-
posed into several mutually orthogonal subspaces spanned by
the columns of matrices �i (i ∈ F), such as columns of the
identity matrix Ip, that is, ei (i = 1, . . . , p), or the eigenvec-
tor matrices U and Ũ. These direction matrices are known
and mutually orthogonal. Any fault, mathematically speaking,
either lies in one of these prespecified mutually orthogonal
subspaces, which is stated in hypothesis (25), or can be decom-
posed into at least two of these subspaces. In either case, the
proposed cdiPCA monitoring statistic, developed from hypoth-
esis (25), can be powerful. See Table III for detailed simulation
results of this.

Based on the monitoring statistic Ri in (17), the LRT statistic
for testing hypothesis (25) should be the maximum among Ri
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(i ∈ F), which is

R = max
i∈F

xT�−1�i

(
�i

T�−1�i

)−1
�i

T�−1x. (26)

In fact, the detectability of a fault occurring exactly in the
column subspace of matrix �i is guaranteed by the following
theorem.

Theorem 2: If a fault, say fault i, occurs with the fault direc-
tion �i, that is, �ifi, for any j ∈ F and j �= i, with x = �ifi,
there is

xT�−1�i

(
�i

T�−1�i

)−1
�i

T�−1x

≥ xT�−1�j

(
�j

T�−1�j

)−1
�j

T�−1x. (27)

The proof can be found in the Appendix.
Recall that in the normal case, Ri in (17) follows asymp-

totically the chi-square distribution χ2
ri

. However, for each Ri

(i ∈ F), the d.f. ri of these chi-square distributions are not nec-
essarily identical. Simply taking the maximum among these Ri

may lead to misleading results. Before maximizing them, one
appropriate solution is to apply some normalization procedure
for standardization. To be specific, the cumulative distribution
function of χ2

ri
evaluated at Ri is applied, which transforms the

monitoring statistic Ri into a uniformly distributed one lying
in the interval (0, 1), that is, the uniform distribution U(0, 1).
In other words

max
i∈F

χ2
ri

(
xT�−1�i

(
�i

T�−1�i

)−1
�i

T�−1x
)

(28)

should be the monitoring statistic if ri (r ∈ F) are not identical.
In a word, given Ri in (17), the cdiPCA monitoring statistic

is summarized as

R =
{

maxi∈F Ri, if ri(i ∈ F) are equal
maxi∈F χ2

ri
(Ri), if ri(i ∈ F) are unequal.

(29)

As with diPCA, the cdiPCA monitoring statistic also includes
some special cases.

First, faults in either the principal subspace or the residual
subspace are considered, which leads to the hypothesis

H0 : μ = 0 versus

H1 : μ = Uf or μ = Ũ̃f. (30)

Notice U of dimension p × q and Ũ of dimension p × (p − q),
where q is the number of principal components. According to
the cdiPCA scheme in (29), after some simplifications, there
is the following monitoring statistic:

max

{
χ2

q

(
T2
)
, χ2

p−q

(
1

σ
Q

)}
. (31)

In fact, this statistic is equivalent to the T2-Q scheme men-
tioned in Section II-A.

So far, it has been shown that the existing monitoring statis-
tics T2, Q, and T2-Q, as well as the proposed PPCA statistic
W in (21) are derived from the (composite) diPCA frame-
work. It should be highlighted that diPCA can incorporate fault
directions into alternative hypotheses and derive monitoring
statistics that speed fault detection.

Furthermore, as in [14], assume that there is at most one
sensor fault, say in the ith sensor. This is common in practice
since faults tend to occur in only a few components, namely,
sparsity. In this case, the fault is expressed as eifi, where the
p × 1 fault direction vector ei has 1 in its ith element and 0
elsewhere, and fi is the fault magnitude. In general, however,
the fault location i is still unknown, namely, i = 1 or . . .

or p. Therefore, monitoring such directional sensor faults is
equivalent to testing the hypothesis

H0 : μ = 0 versus H1 :
∨

i∈{1,...,p}
μ = eifi. (32)

This is like hypothesis (25), and note that the direction matri-
ces �i = ei all have rank 1 here. As a result, based on the
cdiPCA scheme in (29), the monitoring statistic for testing the
above hypothesis is

S = max
i∈{1,...,p} Si = max

i∈{1,...,p}

(
eT

i �−1x
)2

eT
i �−1ei

. (33)

The expression of �−1 can be found in (20). This statistic
focuses on monitoring directional sensor faults, namely, faults
occurring at only one senor. Since it incorporates such direc-
tional fault information, its detection power for sparse sensor
faults can be anticipated. The monitoring statistic in (33) is
referred to as “cdiPCA.”

In addition, Si in (33) follows asymptotically χ2
1 and, there-

fore, S in (33) follows asymptotically the distribution of the
maximum of p χ2

1 distributed variables that are not neces-
sarily independent. This makes it difficult to determine the
theoretical control limit of S. Therefore, the focus is not on
its exact control limit. Instead, the Monte Carlo simulations
are employed to determine this limit such that the significance
level or the type I error probability achieves a specified value.
The simulated and theoretical values of these control limits
are also compared later.

C. Directional-PCA-Based Diagnosis

The cdiPCA monitoring statistic in (29) also facilitates fault
diagnosis. To be specific, let y be the observation vector that
triggers an alarm. The fault ζ should be diagnosed as

ζ̂ =
{

arg maxi∈F Ri, if ri(i ∈ F) are equal
arg maxi∈F χ2

ri
(Ri), if ri(i ∈ F) are unequal

(34)

with

Ri = yT�−1�i

(
�i

T�−1�i

)−1
�i

T�−1y. (35)

Furthermore, the fault magnitude can be estimated or
reconstructed as

f̂
ζ̂

=
(
�

ζ̂
T�−1�

ζ̂

)−1
�

ζ̂
T�−1y. (36)

The diagnostic method in (34) can be applied to the T2-Q
monitoring scheme, identifying whether the fault is in the prin-
cipal component subspace or in the residual subspace. This is
completed by comparing χ2

q (T2) and χ2
p−q([1/σ ]Q).
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In addition, it can also be applied to the cdiPCA monitoring
method, which gives rise to the sensor fault

ζ̂ = arg max
i∈{1,...,p}

(
eT

i �−1y
)2

eT
i �−1ei

. (37)

Moreover, the fault magnitude is reconstructed as

f̂
ζ̂

=
eT
ζ̂
�−1y

eT
ζ̂
�−1e

ζ̂

. (38)

For process diagnosis, Alcala and Qin proposed an RBC
method and showed that it had better performance for fault
diagnosis than the conventional contribution plot methods [14].
The RBC method first reconstructs the fault magnitude along
each possible fault direction and then computes the con-
tribution indices of the directions. The direction with the
maximum contribution is recognized to be the fault direction.
Specifically, with the combined monitoring statistic (7), this
RBC scheme for diagnosis is expressed as

ζ̂ = arg max
i∈{1,...,p}

(
eT

i My
)2

eT
i Mei

(39)

with

M = 1

Jα,T2
U�−1

q UT + 1

Jα,Q
ŨŨ

T
. (40)

Matrix M can also be other choices, such as U�−1
q UT and

ŨŨ
T

[14]. If M = �−1 is taken, this RBC scheme coincides
with the proposed diagnostic scheme (37). Therefore, the diag-
nostic scheme (37) can be regarded as a type of RBC methods,
which, however, stems from the diPCA framework.

IV. PERFORMANCE ASSESSMENT

A. Comparison Criteria

In this section, the performance of the proposed PPCA
statistic (21) and the cdiPCA statistic (33) is investigated and
compared with the conventional T2-Q scheme and the com-
bined index (7). For fairness, the type I error probabilities
or significance levels of all the four approaches are set at
α = 0.005. In particular, the T2-Q scheme is actually com-
posed of two separate monitoring statistics T2 and Q, and
triggers an alarm whenever there is a signal from at least one of
them. In order to keep the overall type I error probability α of
the T2-Q scheme, T2 and Q can be set both with an individual
type I error probability α′ = 1 − (1 − α)[1/2] = 0.002503.

Furthermore, as a convention in statistical process control,
the ARL is used to measure the performance of a monitor-
ing scheme, which measures on average the lengths before an
alarm is triggered. Usually, a single run is actually a random
number because of process randomness and, therefore, a com-
parison based only on a single run does not make much sense.
For thorough investigation, here 10 000 replicated simulations
are performed, that is, 10 000 runs to compute one ARL.

In terms of ARLs, in the normal case, the ARL is denoted
by ARL0, which corresponds to the type I error probability α

and is equal to 1/α = 200. This follows because, given the
probability that a monitoring statistic falls beyond its control

limit, the run length follows a geometric distribution with this
probability. Therefore, ARL0 is the mean of the geometric
distribution Geo(α). In fact, α is also the false alarm rate,
the probability of triggering an alarm in normal operation.
In particular, ARL0s of the T2 and Q statistics in the T2-Q
scheme should be 1/α′ = 399.5, such that the joint ARL0
is 200. For the combined index (7), αs in the involved two
denominators Jα,T2 and Jα,Q are chosen as 0.005, but they
may take other values, say 0.002.

In the faulty state, ARL1 is used to measure the detection
performance of a monitoring method. Here, ARL1 is equal
to 1/(1 − β), where β is the type II error probability or the
missing alarm rate, the probability of failing to trigger an alarm
when the process is faulty. When a fault occurs, with the same
ARL0, a method with a smaller ARL1 indicates that it detects
this fault faster and outperforms others.

B. Determining Control Limits

As mentioned previously, under normal operating condi-
tions, T2, (1/σ)Q, PPCA statistics follow asymptotically the
chi-square distributions χ2

q , χ2
p−q, and χ2

p , respectively. In
addition, the cdiPCA statistic (33) is the maximum of the p
χ2

1 distributed variables that are not necessarily independent,
and [17] provided the theoretical control limit of the combined
statistic (7). In addition to theoretical control limits, bisection
and Monte Carlo simulations are employed here to determine
them. The procedures are as follows.

1) Set a and b as the initial lower and upper bounds,
respectively.

2) Use the midpoint c = 0.5(a + b) as the control limit for
simulations and obtain the corresponding ARL0.

3) If the above ARL0 − 200 < −γ , set a = c;
if the above ARL0 − 200 > γ , set b = c.
Here, γ > 0 is a prespecified precision, usu-
ally selected as the one standard error, that is, the
standard deviation of run lengths/

√
N ≈ 200/

√
N, with

N = 10 000 being the number of replicated simulations
and therefore γ = 2 here. Repeat the above procedures
until |ARL0 − 200| < γ .

Consider the normal-case model

x = Az + ε with z ∼ N(0; I3) and ε ∼ N(0; σ I6) (41)

and

A = 5 ×

⎡

⎢⎢
⎢⎢⎢⎢
⎣

0.525 0.175 −0.068
0.126 −0.152 0.558
0.245 0.216 0.481
0.112 0.167 0.387
0.346 0.535 −0.053
0.132 −0.211 0.462

⎤

⎥⎥
⎥⎥⎥⎥
⎦

, σ = 0.25. (42)

Based on this model, the original covariance matrix � can be
calculated. By performing the eigenvalue decomposition of �,
based on the CPV criterion, q = 3 principal components are
obtained; whereas, the original dimension p = 6. The link
matrix A and the sensor error variance σ are estimated using
(10) and (11), respectively.

To see the effectiveness of simulation methods in determin-
ing control limits, their theoretical and simulated limits for the
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TABLE I
COMPARISON OF THEORETICAL AND SIMULATED CONTROL LIMITS

four methods are listed in Table I, denoted by T2-Q, combined,
PPCA, cdiPCA, respectively. In particular, there are two con-
trol limits for the T2-Q scheme, one for T2 and the other for
Q. Note that there are two methods to calculate the theoretical
control limit of Q. One is 3.6188, calculated from [19], and the
other is 3.5795, which follows because (1/σ)Q is asymptoti-
cally subject to χ2

3 . The latter is simple to calculate and very
close to the simulated value 3.5775. Throughout Table I, it is
shown that for the T2-Q scheme, the combined index (7), and
the PPCA statistic (21), their theoretical and simulated control
limits are very close. This demonstrates the effectiveness of
simulation methods.

However, there seems to be large deviation between the
theoretical and simulated values for the cdiPCA statistic (33).
This follows because the theoretical value is based on the inde-
pendent assumption of Si in (33) for different i = 1, . . . , 6,
which is not necessarily the case in reality. To be specific, this
value is calculated using the following approximation [29]:

cp
(
Rt − dp

) d→ � (43)

where
d→ means convergence in distribution, � follows the

Gumbel distribution with the cumulative distribution function
Pr(� ≤ x) = e−e−x

and the quantile function − ln(− ln α), and
cp = (1/2), dp = 2 ln p−ln ln p−ln π = 2 ln 6−ln ln 6−ln π =
1.8556. With the Type I error probability α = 0.005, the
quantile of the Gumbel distribution is 5.2958, and finally, the
theoretical value of the control limit of the cdiPCA statis-
tic (33) is 5.2958/cp + dp = 12.4472. See also [29, Table
3.4.4] for the detailed derivation to approximate the quantile
of p independent chi-square distributions.

C. Comparison in Process Monitoring

The performance of the four methods: 1) T2-Q; 2) com-
bined; 3) PPCA; and 4) cdiPCA in detecting single-sensor
faults is studied, where the fault occurs in a single unknown
sensor, say the ith (i = 1 or , . . . , or 6), with magnitude fi. The
results for comparison are obtained by Monte Carlo simula-
tions based on model (41) with the parameter settings in (42)
and are displayed in Table II. Note that the standard errors
of ARL1s are also reported in parentheses, facilitating com-
parison. Note that ARL0 = 200 in the fault-free case. In all
six cases (f1–f6), as the fault magnitude increases (in absolute
value), the ARL1s resulting from each approach decrease. For
instance, the PPCA index in (21) has a large ARL1 100 for
f1 = −1.0 and a small ARL1 2.95 for f1 = −4.0. Specifically,
PPCA slightly outperforms the combined index (7) by approx-
imately one standard error. This advantage holds uniformly
throughout Table II and is because of the power of LRT.
Also, except f1, T2-Q detects large faults faster but small faults
slower than combined and PPCA.

(a) (b)

Fig. 1. ARL curves of the four methods in detecting single-sensor faults.
(a) Sensor 1. (b) Sensor 4.

In addition, Table II shows that for all the faults f1–f6,
the cdiPCA method, namely, cdiPCA in (33), has uniformly
smaller ARL1s (the best results are in bold) and, therefore,
detects all the single-sensor faults uniformly much faster than
all the other three methods, and this superiority is signifi-
cant. It follows because cdiPCA narrows down to single-sensor
faults alone, and its test power has been improved to a
large extent. This verifies that incorporating such directional
information facilitates fault detection, but such information
is completely ignored by conventional PCA-based process
monitoring approaches, such as T2-Q and combined.

To investigate the performance of the four methods thor-
oughly, curves are also drawn to display how ARL1s change
with fault magnitudes f1 and f4 for sensors 1 and 4, respec-
tively, in Fig. 1. It shows that the cdiPCA statistic (33)
uniformly has the shortest ARL1s and stands out by a large
margin.

Furthermore, multiple-sensor faults are considered. Suppose
that sensors 1 and 4 are known to be faulty in advance and,
therefore, the fault direction matrix should be �i = [e1, e4].
Based on (17), a monitoring statistic can be developed, denoted
by diPCA. Here, the investigation of diPCA in (17) actually
shows the advantage of knowing the fault direction matrix,
which, however, may be unknown in practice. It is assumed
that both sensor faults have magnitude f1,4. The comparison
results between T2-Q, combined, PPCA, cdiPCA, and diPCA
are listed in the upper half of Table III. Similarly, it is also
assumed that sensors 2, 3, and 6 are faulty with the fault direc-
tion matrix �i = [e2, e3, e6] and all with magnitude f2,3,6. The
comparison results are listed in the lower half of Table III.
Here, to set ARL0 = 200, the control limits can also be
determined by simulations, which are approximately equal to
their theoretical values, namely, the quantiles of the chi-square
distributions χ2

2 or χ2
3 (like Theorem 1).

According to Table III, by exploiting the fault direc-
tions fully, the diPCA statistic that assumes known direction
matrices uniformly outperforms the other four approaches in
all cases, showing the advantage of the diPCA monitoring
scheme (17). In addition, it is noteworthy that cdiPCA still
outperforms and detects faults earlier than T2-Q, combined,
and PPCA with smaller ARL1s, although the true fault direc-
tion matrices [e1, e4] and [e2, e3, e6] violate the assumption in
hypothesis (25).
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TABLE II
ARL COMPARISON IN DETECTING SINGLE-SENSOR FAULTS

D. Comparison in Process Diagnosis

Here, the performance of the diagnostic approach (37)
derived from cdiPCA is investigated and compared with the
RBC scheme (39) proposed by Alcala and Qin [14]. The
simulation settings are the same as Table II with unknown
single-sensor faults. The observation vector y used in (37)
and (39) is the one that triggers an alarm using the cdiPCA
statistic (33). The diagnostic performance is measured by the
matching rates that the identified sensor fault is the true fault,

TABLE III
ARL COMPARISON IN DETECTING MULTIPLE-SENSOR FAULTS

TABLE IV
MATCHING RATES (%) COMPARISON IN DIAGNOSING

SINGLE-SENSOR FAULTS

and still, this rate is computed based on 10 000 replicated
simulations.

The comparison results for diagnosing single-sensor faults
are listed in Table IV. It is seen that both diagnostic schemes
behave very similarly and that as the fault magnitude increases,
the matching rate approaches 100%, regardless of positive or
negative faults. However, in terms of the number of best results
that are in bold (28 for cdiPCA and 20 for RBC) in Table IV,
cdiPCA seems to exhibit a slight advantage over RBC.
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TABLE V
F-MEASURE COMPARISON IN THE TE PROCESS

V. CASE STUDY

The TE process is a well-known benchmark dataset for
evaluating various fault detection and diagnosis methods, and
many papers have employed it for a practical implementa-
tion [30], [31]. This dataset involves 41 measured variables
that consist of 22 process variables sampled every 3 min and
19 quality variables sampled with time delays, as well as 11
manipulated variables. Here, simultaneously monitoring the 22
process variables XMEAS(1), . . . , XMEAS(22) and the 11
manipulated variables XMV(1), . . . , XMV(11) is considered;
hence, the dimension p = 33.

The normal-case training data are first scaled to zero
mean and unit variance in each dimension, resulting in the
covariance matrix �. By performing PCA on �, q = 19 prin-
cipal components are chosen such that the CPV is larger
than 95%, and correspondingly U, Ũ, and �q are obtained.
In addition, the link matrix A and the sensor error vari-
ance σ = 0.0967 are estimated using (10) and (11),
respectively. Until now, all four monitoring methods, that
is: 1) the T2-Q; 2) combined in (7); 3) PPCA in (21);
and 4) cdiPCA in (33) can be devised. Their control lim-
its are still chosen by simulations, such that their ARL0s
are all 200, or equivalently with the Type I error proba-
bility 0.005. In addition, the improved mixture of PPCA
(I-MPPCA) scheme with six local models suggested by
Zhang et al. [23], the dynamic PCA (DPCA) and indepen-
dent component analysis (ICA)-based monitoring schemes
are all employed here, whose control limits are determined
by kernel density estimation to achieve the Type I error
probability 0.005.

TABLE VI
F-MEASURE COMPARISON IN THE TE PROCESS FOR FAULTS 5 AND 19

There are in total 21 faults in the TE process, 160 normal
vectors, and 800 faulty vectors in each fault dataset. As rec-
ommended by one reviewer, the performance is measured by
the F-measure, which considers simultaneously the numbers
of false alarms (false positive, FP), true alarms (true posi-
tive, TP), and missing alarms (false negative, FN), and it is
defined as

F = 2TP

2TP + FP + FN
. (44)

The comparison results are listed in Table V. For Faults 1, 2, 4,
6—8, 11—14, 17, 18, and 21, the proposed PPCA and cdiPCA
behave slightly worse than the best approaches (indicated in
bold). For Fault 5, cdiPCA is still slightly worse than the best.
While ICA has the best performance in detecting Faults 10,
16, 19, and 20, the proposed PPCA and, especially cdiPCA
behave best in detecting Faults 3, 9, and 15, where many other
approaches, including ICA, are not effective with very small
F-measures. This phenomenon was also reported by Dong and
Qin [30] and Yin et al. [31].

It should be highlighted that in detecting Faults 5 and 19,
cdiPCA outperforms PPCA by a large margin. This indicates
that the two faults are very likely to be single-sensor faults,
where the fault occurs in only one sensor. Thus, the diPCA
monitoring statistic in (17) is further employed with the direc-
tion matrices using the diagnostic procedure in (37). In fact, we
found that of 793 (99.13%) true alarms when detecting Fault 5,
(37) attributes 515 alarms to sensor 33, that is, XMV(11). Fault
5 occurs in the condenser cooling water inlet temperature, and
XMV(11) happens to be the condenser cooling water flow.
Similarly, of 582 (72.75%) true alarms when detecting Fault
19, (37) attributes 323 alarms to sensor 27, that is, XMV(5).
The diagnostic results hint at the direction matrices of Faults 5
and 19, which are e33 and e27, respectively. This further facili-
tates the use of the diPCA method that is expressed in (17) and
assumes known fault directions. Therefore, the diPCA meth-
ods with �i = e33 and �i = e27, respectively, can also be
employed. The results together with the other methods are
listed in Table VI. It is seen that only one known fault direction
suffices for fault detection with high F-measures.

VI. CONCLUSION

This article established a diPCA framework for process
monitoring and diagnosis based on the LRT of the PPCA
model. The hypothesis testing has the flexibility to incorporate
various types of fault directions, including a single direction
and mutually orthogonal directions. Consequently, some exist-
ing monitoring indices, such as T2 and Q, are special cases
of diPCA monitoring statistics. Moreover, using the identity
matrix as the fault direction matrix, a novel combined mon-
itoring index involving both T2 and Q was proposed. Unlike
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the conventional combined index in [17], this new combined
statistic does not involve extra parameters and makes statis-
tical sense. As a byproduct, the concise forms of the control
limits of the Q statistic and the new combined statistic are
suggested, which are sufficiently accurate and easy to derive.

Furthermore, by incorporating composite hypotheses,
cdiPCA monitoring statistics are also proposed, which include
the T2-Q scheme as a special case and also lead to a fast mon-
itoring statistic to detect single-sensor faults. Besides speeding
fault detection, the (composite) diPCA also facilitates accurate
fault diagnosis.

The PPCA model employed here does not take autocorrela-
tion between processes into account, which may be insufficient
when monitoring dynamic processes [30], [32]–[34]. Another
topic is the nonlinear extension by integrating diPCA with just-
in-time learning [35], [36], or with kernel methods [16], [37].
In fact, directional fault information can also be combined with
and exploited by other models in various circumstances, such
as the hidden Markov models [38] and Bayesian networks [39]
for fault classification. These topics deserve future research.

APPENDIX A
PROOF OF THEOREM 1

Consider the LRT for testing the null hypothesis H0 against
the alternative H1. Let �0 and �1 be the subsets of the param-
eter spaces associated with H0 and H1, respectively, and let
	 = �0 ∪ �1. Denote the dimensions of �0 and 	 by v0
and v, respectively. Casella and Berger [28, Th. 10.3.3] stated
that the LRT statistic for testing H0 against H1 asymptotically
follows the chi-square distribution with d.f.= v − v0, that is,
χ2

v−v0
.

The expression in (17) is the LRT statistic for testing
hypothesis (13), which is rewritten as follows:

H0 : μ = 0 versus H1 : μ = �ifi. (45)

Here, the dimension of H0 : μ = 0 is 0, which is just a single
point; whereas, the dimension of H1 : μ = �ifi is ri, where ri

is the rank of the fault direction matrix �i and the rank of the
column space of �i. According to [28, Th. 10.3.3], the LRT
statistic in (17) asymptotically follows χ2

ri
.

Specifically, if �i = Ũ with rank p − q, the LRT statistic
in (17) leads to (1/σ)Q and, therefore, (1/σ)Q asymptotically
follows χ2

p−q. Also, if �i = Ip with rank p, the LRT statistic
in (17) leads to W in (21) and, therefore, W asymptotically
follows χ2

p . This concludes the proof of Theorem 1.

APPENDIX B
PROOF OF THEOREM 2

First, we prove for any p × r matrix G with rank(G) = r
and any p × l matrix H with rank(H) = l, there is

HTH ≥ HTG
(
GTG

)−1
GTH. (46)

To this end, construct the following matrix:

B = Ip − G
(
GTG

)−1
GT . (47)

It can be verified that B is a symmetric and idempotent matrix,
satisfying B = BT = B2. Therefore, B is positive semidefinite,
leading to

Ip − G
(
GTG

)−1
GT ≥ 0. (48)

By multiplying HT and H on both sides of (48), there is

HT
(

Ip − G
(
GTG

)−1
GT
)

H ≥ 0 (49)

which is equivalent to (46).
Furthermore, take

G = �− 1
2 �j, H = �− 1

2 �i. (50)

By substituting G and H in (50) into (46), there is

�i
T�−1�i ≥ �i

T�−1�j

(
�j

T�−1�j

)−1
�j

T�−1�i. (51)

Notice x = �ifi with arbitrary fi, and finally, we have

fT
i �i

T�−1�ifi

≥ fT
i �i

T�−1�j

(
�j

T�−1�j

)−1
�j

T�−1�ifi. (52)

This concludes the proof of Theorem 2.
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