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Predictive Modeling by Hierarchical Variable
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Kai Wang, and Fugee Tsung

Abstract—Modern manufacturing industries are often featured
with a data-rich environment. The real-time behaviors of process
variables can be completely recorded as multiple various signal
signatures, and the geometric quality of finished products can be
thoroughly characterized by their two-dimensional surface data.
Learning the relationship between such signal predictors and
surface responses, where the input and output are no longer the
conventional scalar variables but are in fact both functions in
the time domain and spatial domain, respectively, is critical for
quality prediction in many applications nowadays. To this end,
this paper proposes a novel Sparse and Structured Function-
on-Function Regression (SSF2R) model, where a hierarchical
variable selection is developed to identify informative signals and
further screen significant elements within the selected signals, and
a multitask learning is devised to exploit the smoothness nature
of surface response and the similarity structure among a series of
sub-regression tasks. Our SSF2R model is concisely formulated
as a convex problem with an efficient iterative algorithm derived
to obtain the global optimum. Moreover, our quality prediction
can be performed dynamically during an ongoing manufacturing
process when only partial observations of the signal predictors are
available. The superiority of our proposed method is validated by
numerical simulations and a real case study in the semiconductor
industry.

Index Terms—Functional data analysis, functional regression,
regularization method, sparse learning, structure penalty.

I. INTRODUCTION

RAPID advances in information technology and indus-
trial revolution have created an unprecedented data-

rich manufacturing paradigm [1]. The real-time status of all
process variables can be continuously recorded by large-
scale online sensing nodes, forming a multitude of time-
ordered data streams knowns as profiles or signals, and the
geometries of fabricated products can be thoroughly examined
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Fig. 1: PVD process with signal predictors and surface response.

by modern sophisticated metrology devices, generating ample
yet complex quality data such as images and surfaces. Hinging
on such industrial big data, learning the relationship between
product quality responses and process variable signatures is
an extremely promising initiative as a gift of data availability,
but also a quite challenging task due to the curse of data
complexity. The learned quality predictive model assumes
a fundamental role in current soft sensing applications for
reducing operational costs and improving production yield [2].

In this paper, we propose a novel Functional Regression
(FR) model for quality prediction where both the predictors
and the response of interest are functions. Particularly, the
predictors are multiple in-situ signals which are functions in
the time domain, whereas the response is a product surface
which is a function in the spatial domain. This work is moti-
vated by a real manufacturing example from the semiconductor
industry named the Physical Vapor Deposition (PVD) process
(see Fig. 1). This process coats an electronic panel with a thin
film in a high-temperature and high-pressure chamber, where
the high-energy atoms ejected by a source material fly to and
accumulate at the surface of the electronic panel. The signal
trajectories of two process variables are demonstrated in Fig.
1. After the manufacturing, the film thickness is measured
by a touch-probe coordinate machine at 17 different locations
in the electronic panel. Current quality forecast approaches
adopted in the semiconductor industry when the target is

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 01,2021 at 14:14:43 UTC from IEEE Xplore.  Restrictions apply. 



1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.3041830, IEEE
Transactions on Industrial Informatics

2

surface thickness include the popular linear regression model
and some machine learning methods such as the Support
Vector Regression (SVR) and Neural Network (NN) [3]–[6].
However, these existing ones all simplify the entire signal
signatures and product surface into a few scalar variables,
i.e., they take the mean, range or variance of predictors and
response as summary statistics to reduce the data complexity,
which in effect fails to utilize the available functional data
completely and would cause a great information loss.

In our proposed function-on-function regression model, we
follow the Functional Data Analysis (FDA) reasoning [7]
where either the process signal or the product surface is
regarded as a single complete functional datum of a continuity
or smoothness nature, which captures maximum data infor-
mation and circumvents the traditional feature extraction ef-
forts. When predictive modeling involves numerous predictors,
Variable Selection (VS) is often conducted to enhance model
interpretation and generalization [8]. For the multiple func-
tional predictors in our context, a new Two-Level Hierarchical
VS (TLH-VS) is developed. The main idea is that firstly, at
the function level, we identify the informative signals globally
that highly impact the quality response, and secondly, at the
element level, we further determine the dominant segments
or parts locally within the selected signals. Such a TLH-VS
accommodates to the inherent hierarchical structure of the
multivariate functional predictors, and could enable a more
flexible and interpretable sparisty pattern in the estimated
regression coefficients.

Additionally, when the response is also conveyed by a
function with a smoothness functional integrity, the quality
measurements at neighbouring locations in this functional
response would exhibit certain similarities. For example, in
our PVD process, the film thicknesses at adjacent surface
coordinates are typically of similar values. If we regard the
predictive model associated with each response measurement
in the coated electronic panel as a sub-regression task, we
would have a series of 17 such sub-regression tasks, and
among them the adjacent ones are prone to have similar
coefficients as indicated by the above similarity structure. To
exploit this explicitly in our predictive model, we adopt the
MultiTask Learning (MTL) [9], [10] to solve these multiple
interconnected sub-regression tasks jointly. Our devised mech-
anism is to intentionally penalize the pair-wise coefficients’
differences of these sub-regression tasks and the penalties
will become pronounced when two locations in the functional
response get close to each other. In this way, we achieve the
transfer of knowledge on model parameters across multiple
related tasks, i.e., the information on the coefficient values in
each task will be transferred into its adjacent tasks to make
these tasks together tend to have similar coefficients.

Our proposed FR model which integrates the above two
favorable properties, i.e., sparsity and structure, is formulated
as a tractable convex problem. An efficient global optimization
algorithm via the Alternating Direction Method of Multipliers
(ADMM) [11] is derived. Furthermore, our quality predictive
model is extended to a dynamical version where only partial
observations of the functional predictors are available during
the manufacturing progress. The superiority of our Sparse and

Structured Function-on-Function Regression (SSF2R) model
is validated by extensive numerical simulations and a real
case study on the PVD process. Compared with the recently
emerging deep learning networks which are actually end-
to-end black-box models [12], [13], our method with the
functional linear model as one basic building block is simpler,
more transparent and user-friendly. Our delivered coefficients
measure the predictors’ marginal effects and are easier to be
understood by practitioners. Besides, here we propose variable
selection to gain useful knowledge on predictor importance
rather than extract high-level abstract features as in the deep
learning. Finally, our model is convex and thus enjoys a global
optimum while the deep learning is far more computationally
demanding and could be trapped into local optimums.

To sum up, the main contributions of this paper are high-
lighted as below:
• A unified function-on-function regression model embed-

ded with a sparsity and a structure regularization simul-
taneously is proposed to address data complexity in both
the signal predictors and the surface response.

• A novel TLH-VS via a joint use of the L2,1-norm and
L1-norm penalties is developed to identify informative
signal signatures as well as significant individual elements
within the selected signals.

• A tailored MTL with a weighted parameter-fusion penalty
is devised to utilize the interaction structure of multiple
sub-regression tasks and to boost the overall estimation
and prediction performance.

• An efficient ADMM-based optimization algorithm is de-
rived which can perform in a parallel computing fashion,
scale up to big data and converge to the global optimum.

• An extension of our SSF2R model to an online predic-
tion setting is achieved by dynamically completing the
unobserved parts of functional predictors in a supervised
manner.

Following the Introduction, Section II surveys the related
works regarding the FR and MTL. Section III elaborates the
technical derivation of our SSF2R model. The performance of
our proposed method is investigated in Section IV by numeri-
cal simulations and a real case study. Concluding remarks are
given in Section V.

II. RELATED WORK

Linear regression is a commonly used prediction tool since
it is simple to implement, easy to interpret and fast to compute
[8] The FR model is an advanced variant of the linear regres-
sion model where either predictors or response or both are
functions. It becomes an active area of FDA and receives most
research attention recently [14]. A large body of current FR
works are confined to a scalar-on-function scenario where the
response is a scalar. To name a few, Zhang et al. [15] employed
the cubic spline basis functions to represent the functional
predictors, and then the multiple linear regression model is
applied to regress the scalar response on the basis function
coefficients. A second-order derivative roughness penalty is
often imposed to control the degree of smoothness of the
estimated coefficient functions. The functional predictors can
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also be represented in a data-driven manner by the principal
components [16]. When the response is also in a functional
form, the regression coefficient in this function-on-function
scenario turns to be a bivariate function which is defined in the
joint domain of the predictors and response, and the relevant
works are comparatively less [14]. The two-dimensional (2-D)
smooth splines [17] or the products of eigenfunctions of the
predictors and response [18] can be taken as proper candidates
when the basis functions are still used. The roughness penalty
herein regulates the smoothness of the bivariate coefficient
function in the marginal and diagonal directions [19].

Besides the basis function representation and the roughness
level governance, the sparsity regularization has also been
widely used in the FR models [14] to cope with the high-
dimensional challenge, and more importantly, to make the
regression model more interpretable via variable selection.
When only a single functional predictor is involved, the Least
Absolute Shrinkage and Selection Operator (LASSO) or L1-
norm penalty can be adopted to facilitate the basis function
selection [20]. For multiple functional predictors, the basis
function coefficients associated with each predictor form a
group, and the group LASSO or L2,1-norm penalty is typically
used to select informative functional predictors or groups [21],
[22]. The preceding VS for multivariate functional predictors,
however, can only perform at the function level in our context
to identify informative signal signatures as a whole. The TLH-
VS as introduced in Section I which is able to further screen
local elements in the selected signals, is rarely studied in the
existing FR works. One exception is Paynabar et al. [23] where
a two-step nonnegative garrote VS technique is proposed for
a scalar response, but their step-by-step selection manner does
not guarantee the globally optimal VS result.

In modern machine learning field, the MTL is an important
research branch [9], [10]. It aims to learn multiple different
but related tasks together and to enhance the overall prediction
accuracy by sharing the knowledge learned from these tasks.
Conceptually, an MTL scheme can be built via either the
feature transfer that uncovers a set of common latent features
across tasks [24], [25] or the parameter transfer that assigns
a joint prior distribution for model parameters from all tasks
[26], [27]. Technically, the regularization is one main approach
to explicitly utilize the task relatedness in MTL by inducing
particular structures in the estimated model parameters [28]. A
variety of regularization terms have been well designed with
different exploitations on the task relationship, such as the
group LASSO which promotes consistent VS results among
similar tasks [29] and the fused LASSO which encourages
equivalent model parameters for neighbouring tasks [30]. The
use of the MTL in the function-on-function regression scenario
to leverage the inherent smoothness integrity of the functional
response, that is, to explore the potential similarity structure
among a range of sub-regression tasks as discussed in Section
I, has not yet been investigated.

III. METHODOLOGY

This section first provides the preliminaries of function-on-
function regression model. Then the TLH-VS via a sparsity

regularization and the MTL via a structure regularization
are developed to formulize the proposed SSF2R model. An
efficient iterative optimization algorithm is derived for model
parameter estimation. The extension to dynamical prediction
with partial observations is finally discussed.

A. Function-on-Function Regression Model

Suppose we have collected a training dataset which consists
of N historical samples. For the ith sample, i = 1, . . . ,N, xi j(t),
j = 1, . . . ,P, denotes the jth functional predictor which is a
signal signature and t ∈T indicates the time domain, and yi(s)
denotes the functional response which is a product surface and
s ∈S implies the spatial domain. In the function-on-function
regression model [14], we have

yi(s) =
P

∑
j=1

∫
T

xi j(t)θ j(t,s)dt + εi(s), i = 1, . . . ,N, (1)

where θ j(t,s) is a bivariate coefficient function which mea-
sures the effect of the jth predictor on the response and
such an effect could be changeable as t or s varies in their
respective time or spatial domain. In addition, εi(s) is a zero-
mean random error function. Note that here xi j(t) and yi(s)
have been centered and standardized over the N samples, so
the intercept term can be omitted.

In practice, the continuous functions xi j(t)’s and yi(s)’s are
always unavailable, but rather they are evaluated at a fine gird.
Specifically, suppose the time domain of the signal predictors
is discretized at t = 1, . . . ,T . The spatial domain of the surface
response is indexed by s = 1, . . . ,S, where each spatial index
s is attributed with an in-plane or 2-D coordinate to label its
true location on the product surface. Then the discrete version
of (1) is

yis =
P

∑
j=1

T

∑
t=1

xi jtθ jts + εis, i = 1, . . . ,N, s = 1, . . . ,S. (2)

Let ys = (y1s, . . . ,yNs)
T be a vector including all response

observations at the sth index, and then Y = (y1, . . . ,yS) denotes
the response matrix. We also denote the design matrix and
coefficient matrix by

X =

xT
11· · · · xT

1P·
...

. . .
...

xT
N1· · · · xT

NP·


N×PT,

Θ =

θ 1·1 · · · θ 1·S
...

. . .
...

θ P·1 · · · θ P·S


PT×S,

where xi j· = (xi j1, . . . ,xi jT )
T is the vectorization of xi j(t), and

θ j·s = (θ j1s, . . . ,θ jT s)
T is the vector version of θ j(t,s) along

the index t and for a fixed index s, which links the jth predictor
and the response at the sth index. The matrix form of (2) is

Y = XΘ+ ε, (3)

where ε is the error matrix.
Our quality predictive model can be established by mini-

mizing the following composite objective function:

min
Θ

1
2
||Y −XΘ||2F +λh(Θ), (4)
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where || · ||2F is the square of the Frobenius norm of a matrix,
h(Θ) is a regularization term which is usually used to sup-
press overly model complexity and facilitate proper parameter
structure [8], and λ ≥ 0 is the tuning parameter. The specific
form of h(Θ) to achieve our TLH-VS and MTL is devised in
the sections below.

B. TLH-VS: Sparsity Regularization

Here we configure a sparsity regularization to realize the
TLH-VS. First of all, at the function level, if a signal predictor
(say the jth one) is not informative, i.e., its entire signa-
ture does not have any impact on the quality response, the
regression coefficients θ jts, t = 1, . . . ,T , associated with this
signal predictor will all be zero, i.e., θ j·s = 0. To exclude these
coefficients together, the group LASSO or L2,1-norm penalty
is taken as

h1(Θ) =
S

∑
s=1

P

∑
j=1
||θ j·s||2 = ||Θ||2,1, (5)

where ||θ j·s||2 =
√

θ 2
j1s + . . .+θ 2

jT s is the L2-norm of θ j·s, and
||Θ||2,1 is defined as the sum of these L2-norms.

Next, even though a signal predictor is informative, it is
possible that only a few of its elements are significant, i.e.,
only some of the coefficients θ jts, t = 1, . . . ,T , are non-zero
when θ j·s 6= 0. At this element level, to zero out the negligible
individuals within θ j·s, we further consider the regular LASSO
or L1-norm penalty:

h2(Θ) =
S

∑
s=1

P

∑
j=1

T

∑
t=1
||θ jts||1 = ||Θ||1. (6)

Our proposed sparsity regularization for the TLH-VS is a
combination of h1(Θ) and h2(Θ) in (5)-(6):

hsp(Θ) = λ1h1(Θ)+λ2h2(Θ) = λ1||Θ||2,1 +λ2||Θ||1, (7)

where λ1 ≥ 0 and λ2 ≥ 0 are the tuning parameters. The
sparsity regularization hsp(Θ) can induce an adequate sparsity
pattern in both the signal signatures and the elements in the
selected signals hierarchically (see Fig. 2(a) for illustration).
Notably, it is also quite flexible for the surface response as it
allows for heterogeneous VS results when the spatial index s
is different.

C. MTL: Structure Regularization

We shall now focus on the MTL via a structure regulariza-
tion. Note that the function-on-function regression model in
(2) is actually comprised of a series of S sub-regression tasks,
each of which predicts the surface response evaluated at one
particular spatial index s. For any two spatial indexes s and
s′, we first calculate a similarity measure c(s,s′) based on the
distance of their respective 2-D coordinates, where c(s,s′) can
be numerical in [0,1] or binary in {0,1} (see Section IV for
example).

Then our MTL is devised in light of the intuition that when
two spatial indexes s and s′ are highly adjacent in the surface
response with a large c(s,s′), their associated sub-regression
tasks would have approximate coefficients, i.e., θ j·s ≈ θ j·s′ ,

(a) (b)

Fig. 2: (a) TLH-VS and (b) MTL.

j = 1, . . . ,P. To explicitly utilize such a similarity structure
among these sub-regression tasks, a weighed fused LASSO
penalty is defined as:

h3(Θ) =
P

∑
j=1

T

∑
t=1

S−1

∑
s=1

∑
s′>s

c(s,s′)||θ jts−θ jts′ ||1 = ||ΘC||1, (8)

where c(s,s′) acts as a weight to impose more severe penalty
when s and s′ tend to be closer, and

C =


c(1,2) · · · c(1,S) · · · 0
−c(1,2) · · · 0 · · · 0

...
. . .

...
. . .

...
0 · · · 0 · · · c(S−1,S)
0 · · · −c(1,S) · · · −c(S−1,S)


S× S(S−1)

2

is used to calculate the weighted pair-wise differences of
coefficients in each row of Θ. See the demonstration of this
penalty design in Fig. 2(b).

So far, the potential similarity structure of our bivariate
coefficient function θ j(t,s) over s has been exploited in (8),
but it also possesses a smoothness nature over t when s is
fixed. As such, we finally admit another penalty term [7] to
our MTL which controls the coefficient function’s roughness
longitudinally in the time domain:

h4(θ) =
S

∑
s=1

P

∑
j=1
||D̃θ j·s||22 = ||DΘ||2F , (9)

where D̃ is the numerical second-order derivative operator

D̃ =

1 −2 1 · · · 0
...

. . . . . . . . .
...

0 · · · 1 −2 1


(T−2)×T,

and D is a P-block diagonal matrix with D̃ as its diagonals.
Our structure regularization is a summation of h3(Θ) and

h4(Θ) in (8)-(9):

hst(Θ) = λ3h3(Θ)+λ4h4(Θ) = λ3||ΘC||1 +λ4||DΘ||2F , (10)

where λ3 ≥ 0 and λ4 ≥ 0 are the tuning parameters.
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D. Optimization Algorithm

Our SSF2R model is finally built by combining (4), (7) and
(10):

min
Θ

1
2
||Y −XΘ||2F +λγα||Θ||2,1 +λγ(1−α)||Θ||1

+λ (1− γ)β ||ΘC||1 +λ (1− γ)(1−β )||DΘ||2F , (11)

where the tuning parameters are reparameterized as λ1 = λγα ,
λ2 = λγ(1−α), λ3 = λ (1−γ)β and λ4 = λ (1−γ)(1−β ) with
λ ≥ 0 and γ,α,β ∈ [0,1] to simplify their selections.

Since in (11) the quadratic function || · ||2F and the norm
functions || · ||2,1 and || · ||1 are all convex, our optimization
problem as a summation of these convex functions is also
convex. However, it is not differentiable since the L1-norm
function || · ||1 is not differentiable when evaluated at the zero
point. To solve this, we apply the ADMM [11] to derive an
efficient algorithm. To be specific, we introduce the auxiliary
variables Z = {Z(1),Z(2),Z(3),Z(4)} and rewrite (11) as

min
Θ,Z

1
2
||Y −XΘ||2F +λγα||Z(1)||2,1 +λγ(1−α)||Z(2)||1

+λ (1− γ)β ||Z(3)||1 +λ (1− γ)(1−β )||Z(4)||2F ,
s.t. Θ−Z(1) = 0, Θ−Z(2) = 0,

ΘC−Z(3) = 0, DΘ−Z(4) = 0. (12)

The augmented Lagrangian Lρ(Θ,Z,η) is

1
2
||Y −XΘ||2F +λγα||Z(1)||2,1 +λγ(1−α)||Z(2)||1

+λ (1− γ)β ||Z(3)||1 +λ (1− γ)(1−β )||Z(4)||2F
+Tr

(
η
(1)T

(Θ−Z(1))
)
+Tr

(
η
(2)T

(Θ−Z(2))
)
+

+Tr
(
η
(3)T

(ΘC−Z(3))
)
+Tr

(
η
(4)T

(DΘ−Z(4))
)

+
ρ

2
||Θ−Z(1)||2F +

ρ

2
||Θ−Z(2)||2F

+
ρ

2
||ΘC−Z(3)||2F +

ρ

2
||DΘ−Z(4)||2F ,

where η = {η(1),η(2),η(3),η(4)} are the Lagrangian multipli-
ers corresponding to the four constraints in (12), and ρ > 0 is
called the penalty parameter in ADMM.

Then Θ,Z,η can be estimated by proceeding the following
iterative updating steps.

• Given Z and η , we have vec(Θ̂) = A−1b, where

A = IS⊗XT X +2ρIPT S +ρCCT ⊗ IPT +ρIS⊗DT D

= (ρCCT +ρIS)⊗ IPT + IS⊗ (XT X +ρDT D+ρIPT )

= (ρCCT +ρIS)⊕ (XT X +ρDT D+ρIPT ),

b = (IS⊗XT )vec(Y )−vec(η(1))−vec(η(2))

− (C⊗ IPT )vec(η(3))− (IS⊗DT )vec(η(4))

+ρvec(Z(1))+ρvec(Z(2))

+ρ(C⊗ IPT )vec(Z(3))+ρ(IS⊗DT )vec(Z(4)),

and vec(·), ⊗ and ⊕ are the vectorization, Kronecker
product and Kronecker sum operators, respectively.

• Given Θ and η , we optimize Z as

ẑ(1)j·s =
(

1− λγα

||ρθ j·s +η
(1)
j·s ||2

)
+

(
θ j·s +

η
(1)
j·s

ρ

)
, ∀s, ∀ j,

ẑ(2)jts =
(

1− λγ(1−α)

||ρθ jts +η
(2)
jts ||1

)
+

(
θ jts +

η
(2)
jts

ρ

)
, ∀s, ∀ j, ∀t,

ẑ(3)jtss′ =
(

1− λ (1− γ)β

||ρ
(
(CT ⊗ IPT )vec(Θ)

)
jtss′ +η

(3)
jtss′ ||1

)
+

((
(CT ⊗ IPT )vec(Θ)

)
jtss′ +

η
(3)
jts

ρ

)
, ∀ j, ∀t, ∀(s,s′),

ẑ(4)jts =
η
(4)
jts +ρ

(
(IS⊗D)vec(Θ)

)
jts

ρ +2λ (1− γ)(1−β )
, ∀s, ∀ j, ∀t,

where (a)+ is the soft-thresholding operator which is
equal to a if a > 0 and zero otherwise.

• Given Θ and Z, we perform

η̂
(1)

= η̂
(1)l

+ρ(Θ−Z(1)), η̂
(2)

= η̂
(2)l

+ρ(Θ−Z(2)),

η̂
(3)

= η̂
(3)l

+ρ(ΘC−Z(3)), η̂
(4)

= η̂
(4)l

+ρ(DΘ−Z(4)),

where the superscript l denotes the last iteration step.
The dominant computing burden of our algorithm lies in

the updating of Θ which involves the inversion of A. Fortu-
nately, this difficulty can be skipped based on the property
of the Kronecker sum operator. Specifically, we first apply
the eigendecomposition on CCT and XT X +ρDT D to derive
their eigenvalues and eigenvectors, and then we can obtain
A−1 by properly manipulating these intermediate results. Such
a trick reduces our time complexity from O

(
(SPT )3

)
to

O
(
max{S3,(PT )3}

)
, and A−1 in fact has only to be calculated

once during the entire iteration. Other terms such as IS⊗XT ,
C⊗ IPT and IS ⊗DT in b can also be cached in advance
for their repeated use. Therefore, the overall computation
cost of our algorithm is modest, and the updating of Z can
be performed parallelly to further enhance the computational
efficiency. Based on the convergency property of the ADMM
for convex optimization [11], our algorithm is guaranteed to
get the global optimal solution.

E. Dynamical Prediction

The SSF2R model built in the above sections takes the
complete signatures of signal predictors as input and outputs a
predicted surface after the manufacturing is finished, which is
useful in the soft sensing applications to save measurement
costs and detect quality anomalies [2], but it can also be
extended to a dynamical situation where the data points of
signal predictors arrive progressively during an ongoing manu-
facturing process. That is, at any time before the manufacturing
process is completely over, we can predict the final product
surface based only on the partial observations of the signal
predictors. Suppose for a particular sample under study, up
to current time t, 1 ≤ t < T , we only have the fore parts
of its functional predictors denoted by x jUt = (x j1, . . . ,x jt)

T ,
j = 1, . . . ,P, Ut = {1, . . . , t}. To make our method applicable,
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Fig. 3: SFPC for ys prediction.

we have to complete these functional predictors, i.e., we desire
to estimate x jVt = (x j(t+1), . . . ,x jT )

T where Vt = {t+1, . . . ,T}.
Our completion relies on the historical training samples xi j·,

j = 1, . . . ,P, i = 1, . . . ,N, each of which is also split into two
parts xi jUt and xi jVt . When considering the quality prediction
at the sth spatial index in the surface response, we define the
contribution of the ith training sample as

w(s)
i = exp

(
−κ

P

∑
j=1

∑
t∈Ut

(xi jt − x jt)
2|θ̂ jts|

)
, (13)

where κ is a scale parameter. Then

x̂(s)jVt
=

N

∑
i=1

w(s)
i xi jVt/

N

∑
i=1

w(s)
i , j = 1, . . . ,P, (14)

are weighted averages of the back parts of the training samples,
and

x̂(s)j = (xT
jUt , x̂

(s)T

jVt
)T , j = 1, . . . ,P,

are the estimated complete functional predictors. Finally, the
quality response can be foresaw as

ŷs =
P

∑
j=1

x̂(s)
T

j θ̂ j·s. (15)

Our above prediction is based on a Supervised Functional
Predictor Completion (SFPC) as the regression coefficients
θ̂ jts’s which are estimated from the training dataset are utilized
as weights in (13) (see Fig. 3). Such a SFPC is also adaptive
since the contribution of each training sample, i.e., w(s)

i ,
could be different when predicting quality at different spatial
indexes. At each spatial index s, the time complexities in
the above contribution calculation (13), predictor completion
(14) and quality prediction (15) are O(NPt), O

(
NP(T − t)

)
and O(PT ), respectively, so the overall time complexity in
predicting a whole product surface with S measurements at
each time t is O(NPT S).

IV. PERFORMANCE ASSESSMENT

A. Numerical Simulations

Here we assess the performance of our proposed SSF2R
model on various aspects by extensive numerical simulations.
In a synthetic dataset, we consider N = 100 training samples
and M = 20 test samples. The model input includes P = 5

signal predictors in the time domain, each of which has
T = 15 discrete time points, and the model output is a surface
response in the spatial domain which is measured at S = 16
evenly distributed locations in a 4×4 regular grid. Since the
signal predictors would be normalized beforehand, without
loss of any generality, we generate them from the following
multivariate normal distribution:

xi j·
i.i.d.∼ N(0,Σ), i = 1, . . . ,N, j = 1, . . . ,P,

where Σtt ′ = 0.3|t−t ′|, t, t ′ = 1, . . . ,T , which accounts for the
within-signal correlation. Then for each signal predictor we
set the true coefficient function as below:

θ1ts = 1, for s = 1, . . . ,16,

θ2ts =

{
0, for s = 1,3,4,8,9,13,14,16,
−sin

(
(t−1)π/6

)
× I{1≤ t < 13}+0, otherwise,

θ3ts =


0, for s = 1,2,4,5,9,10,12,13,14,15,16,
0.5(t−1)× I{1≤ t < 3}+(
−0.5(t−1)+2

)
× I{3≤ t < 7}+(

0.5(t−1)−4
)
× I{7≤ t < 9}+0, otherwise,

θ4ts =

{
0, for s = 1,2,3,4,5,6,7,8,10,11,12,15,16,(
1− (t−5)2/16

)
× I{1≤ t < 9}+0, otherwise,

θ5ts = 0, for s = 1, . . . ,16,

where I{·} is the indicator function which is equal to one if the
involved condition is true and zero otherwise. The informative
coefficient functions (θ j·s 6= 0) are depicted in the right panel
of Fig. 4 as the black solid lines of constant, sinwave, linear
and quadratic forms for different predictors and are associated
with the dark indexes in the surface grid in Fig. 4 (left panel),
while the noninformative coefficient functions (θ j·s = 0) are
the gray solid lines corresponding to the gray indexes therein.
The surface responses can finally be generated using (2) with
Var(ε) = 0.22. In the surface response, the similarity measure
c(s,s′) is taken as one if s′ is at the left, right, top or bottom
of s and zero otherwise.

We apply our ADMM-based optimization algorithm derived
in Section III-D to the training samples to test its computa-
tional efficiency, where Θ, Z and η are initialized as zero
matrices and ρ = 1. As clearly shown in Fig 5., the objective
function in (12) converges very quickly and only a few iter-
ations (< 20) are required to find the global optimum. Based
on the training samples, the five-fold Cross-Validation (CV) is
used to determine the tuning parameters from their candidates
λ ∈ {0.00,0.25, . . . ,32} and γ,α,β ∈ {0.0,0.1, . . . ,1.0}.

Now to demonstrate the superiority of our proposed SSF2R
model, we first show the coefficient estimation performance of
our model compared with the conventional FR model which
directly solves (3) and acts as a benchmark. Specifically, we
take two spatial indexes s = 6,10 in the surface response for
example (see left panel of Fig. 4) and plot their estimated
coefficient functions θ̂ j·s, j = 1, . . . ,4 in the right panel of
Fig. 4. It is obvious that our model (blue lines) performs
much better than the benchmark FR model (red lines) as its
estimates are much closer to the true ones. It can shrink both
the insignificant signals and negligible elements to be exactly
zero (see j = 3,4) as a result of TLH-VS, and encourage
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Fig. 4: True and estimated regression coefficient functions (θ 5·s = 0
for all s and are omitted here).

Fig. 5: Convergency analysis of our optimization algorithm.

the informative coefficient functions at neighbouring spatial
indexes to be highly similar (see j = 1,2) due to the MTL.

Next, we verify the prediction advantages of our SSF2R
model intensively over many of its counterparts. Besides the
above FR model, we consider the Partial Least Squares (PLS)
regression [4], SVR [3] and NN [5] as additional benchmarks
which are recently used in the semiconductor engineering
to predict product surface thickness. Other FR models with
various regularization terms are also included. Please note that
the comparison between our SSF2R model and the benchmarks
is used to certificate the sufficient capability of our method for
quality prediction, while the comparison between our model
and other regularized FR models is to validate the benefits of

TABLE I: Summary of competing methods and their AMSE
comparison.

Notation Method Mean Std

FR Functional Regression 0.1662 0.0221

PLS Partial Least Squares (PLS) regression [4] 0.1434 0.0220

SVR Support Vector Regression [3] 0.1392 0.0234

NN Neural Network [5] 0.1211 0.0188

FS Function-level Sparse FR [21], [22] 0.0718 0.0073

ES Element-level Sparse FR [20] 0.0725 0.0077

HS Hierarchical or two-level Sparse FR 0.0693 0.0071

MT MultiTask learning-based FR 0.0624 0.0070

SM SMoothness-regularized FR 0.0917 0.0106

ST STructure-regularized FR 0.0580 0.0054

SS Our proposed SSF2R model 0.0528 0.0046

our joint use of the sparsity and the structure regularizations.
See Table I for the summary of notations of all competing
methods. The Mean Square Error (MSE) and the Average MSE
(AMSE) are used to evaluate the prediction accuracy regarding
a particular test sample and a whole test dataset, respectively:

MSEi =
1
S

S

∑
s=1

(
yis−

P

∑
j=1

T

∑
t=1

xi jt θ̂ jts
)2
, AMSE =

1
M

M

∑
i=1

MSEi.

We repeatedly generate 200 synthetic datasets. The boxplots
of the resultant 200 AMSEs obtained by different competing
methods are exhibited in Fig. 6, and the mean and standard
deviation (Std) of these 200 AMSEs are also listed in Table
I. Our discoveries are highlighted in the following:

• First of all, our SSF2R model outperforms the benchmark
FR, PLS, SVR and NN models as it is equipped with two
sophisticatedly tailored regularization terms (sparsity and
structure) to address the inherent data complexity in both
the functional predictors and the functional response.

• The HS model with a two-level penalty (7) behaves
better than the FS with only a function-level penalty
(5) and the ES with only an element-level penalty (6),
which indicates that our TLH-VS is more powerful when
multiple functional predictors are studied.

• The MT model with a structure penalty (8) achieves rather
small prediction errors, which justifies the capability of
the MTL in predicting a functional response. The addition
of a smoothness regularization in the ST model which has
a hybrid penalty (10) further improves the prediction.

• Lastly, in conjunction with the benefits of the TLH-VS
and the MTL ingredients discussed above, our proposed
SSF2R model in (11) enjoys the best generalization
performance with the smallest prediction errors.

We also analyze the robustness of our SSF2R model. Note
that the informative or nonzero true coefficient functions θ j·s’s
are identical for each j in the above simulations. To relax this,
we take j = 2 as an example, and make the modification:

θ2ts =− (1+ rs)sin
(
(t−1)π/6

)
× I{1≤ t < 13}+0,

for s = 2,5,6,7,10,11,12,15,
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Fig. 6: Boxplots of AMSEs of competing methods.

Fig. 7: Boxplots of AMSEs in robustness analysis.

where rs
i.i.d.∼ Uniform(0,δ ). When δ > 0, the generated θ 2·s’s

are only approximate but not the exactly same over s. We
consider another four simulation cases with δ = 0.5,1,2,3
and their AMSEs are plotted in Fig. 7. It can be observed
that the HS is rarely affected, whereas the ST degenerates
since a larger δ would lead to more heterogeneous coefficient
functions. Our SS is still the best one in all cases due to its use
of both the sparsity and the structure regularizations, and the
AMSE curve becomes even flat when δ gets larger. Therefore,
our method is robust and can adjust to model coefficient
structures of moderate and low degrees of similarity.

Finally, the dynamical prediction by our method is investi-
gated in Fig. 8, where one training dataset with 100 training
samples is concerned and the MSEs of 200 test samples
are plotted. When t = 0 with no predictor observations at
all, we just take the mean of the training surfaces as the
predicted surface. When t = 15, we have the complete signal
predictors to perform prediction. When 1 ≤ t ≤ 14, we first
complete the partial signals using our proposed SFPC, and
then proceed the prediction based on the estimated coefficients
of the SSF2R model. We also demonstrated the MSEs by
an UnSpervised Functional Predictor Completion (USFPC)
where the estimated coefficient Θ is not utilized to calculate
the training sample contributions in (13). Our dynamical
prediction is effective as the MSEs when 1≤ t ≤ 14 are smaller
than those obtained by a blind guess at t = 0. Additionally, the
proposed SFPC is better than the USFPC, which verifies the
advantages of our training sample discrimination via the use of

Fig. 8: Boxplots of MSEs in dynamical prediction.

estimation information in the completion of signal predictors.

B. Real Case Study

We now revisit the PVD process example as introduced in
Section I. This real dataset includes 117 samples, from which
100 are randomly drawn for training and the left ones for test.
We have five process variables, which are often selected as the
chamber-related predictors for the film thickness prediction
[3], [5]. Each variable is collected and stored every second
by the deployed sensor node as the PVD process proceeds,
and finally forms a signal signature of 15 time points. The
means and 95% point-wise Confidence Intervals (C.I.) of
these signal signatures are plotted in Fig. 9(a)-(e). The 17
measurement locations in the electronic panel are scaled into
a [0,1]× [0,1] square for simplicity as shown in Fig. 9(f), and
the film thicknesses are measured at these locations by a touch-
probe coordinate machine. Based on Fig. 9(f), we calculate the
similarity measure as c(s,s′) = exp(−0.2× dist(s,s′)) where
dist(s,s′) is the Euclidean distance between two spatial indexes
s and s′. We further eliminate c(s,s′)’s that are less than 0.05.

Our proposed SSF2R model in (11) takes the above P = 5
process variables, each including T = 15 time points, as input
and the surface of an electronic panel with S = 17 thickness
measurements as output. The tuning parameters are decided
as λ = 5.0, γ = 0.6, α = 0.8 and β = 0.8 by performing the
five-fold CV among the training samples, which implies that
the optimal SSF2R model leans on both the sparsity and the
structure regularization almost equally (γ ≈ 0.5), but it puts
more weights on the group LASSO penalty (α > 0.5) and the
fused LASSO penalty (β > 0.5) than the LASSO penalty and
the smoothness penalty, respectively.

The AMSEs of all considered methods for the test samples
are listed in Table II, and the pair-wise Student’s t test between
our SS and its counterparts validates the significantly superior
prediction performance of our model. At each spatial index s in
the surface response, we also calculate the Square Errors (SEs)
of our prediction at this spatial index for the 17 test samples,
and present the SE boxplots along these spatial indexes in Fig.
10. We find that there is no discernible difference between
the predictions in the center and boundary spatial indexes,
so our model works well in the boundary regions of the
electronic panel. The dynamical prediction is also conducted
in Fig. 11, where our method is again effective with lower
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(a) (b)

(c) (d)

(e) (f)

Fig. 9: (a) Voltage, (b) Current, (c) Pressure, (d) Air flow rate, (e)
Temperature and (f) Measurement grid in the surface response.

TABLE II: AMSEs of competing methods.

FR PLS SVR NN FS ES

AMSE 0.2230 0.2208 0.1895 0.1446 0.1233 0.1124

p-value 0.0000 0.0000 0.0005 0.0014 0.0044 0.0254

HS MT SM ST SS

AMSE 0.1113 0.1191 0.1541 0.1140 0.1061

p-value 0.0107 0.0236 0.0000 0.0054 –

errors than the blind guess (red line), and we suggest that
at least a half of the signal signatures (t > T/2) should be
accumulated so as to obtain a reliable prediction result. Our
algorithm is programmed by Python 3.7 software in a personal
computer with 1.60-GHz i5-10210U CPUs. For the model
parameter estimation from the training samples, it takes about
1.27 hours to search the optimal tuning parameters among their
candidates by the five-fold CV. For the dynamical prediction
on a test sample, it only consumes 0.0176 seconds to obtain the
predicted surface at each time point during the PVD process.

The prediction superiority of our SSF2R model to other
regularized ones in Table II evidences the adequacy of the
hierarchical sparsity and the similarity structure in the regres-
sion coefficient functions. Fig. 12(a) demonstrates whether
the estimated coefficient functions θ̂ j·s’s over j and s are
selected or not (one or zero), whereas Fig. 12(b) visualizes the
proportions (between zero and one) of the significant elements
in these coefficient functions θ̂ j·s’s. It can be seen that for each
spatial index s, our TLH-VS indeed identifies some important
signal predictors at the function level, and further selects only

Fig. 10: Boxplots of SEs over spatial indexes in surface response.

Fig. 11: AMSEs in dynamical prediction.

(a) (b)

Fig. 12: (a) VS in the function level and (b) VS in the element level.

a few significant elements in the informative signals at the
element level. For different spatial indexes s’s, the VS results
could be different. The distinct VS patterns at the boundary
indexes, such as 1, 2, 3, 15, 16, 17, are possibly due to the fact
that these boundary indexes are adjacent to different modules
in the PVD chamber. For example, the spatial indexes 1 and
3 are near the air-in and air-out pipes, and the spatial index 2
is near the power module.

We can also explore the similarity among the obtained infor-
mative coefficient functions θ̂ j·s’s associated with each signal
predictor. For example, we consider the pressure variable in
Fig. 9(c) where j = 3. We calculate the Degree of Similarity
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(a) (b)

Fig. 13: (a) DoS heatmap and (b) Spatial indexes in a cluster with
high DoSs.

(DoS) between any two coefficient functions as

DoS(θ̂ 3·s, θ̂ 3·s′) = 1−||θ̂ 3·s− θ̂ 3·s′ ||2/max{||θ̂ 3·s||2, ||θ̂ 3·s′ ||2}

which is zero if θ̂ 3·s = 0 or θ̂ 3·s′ = 0. The DoS heatmap is
exhibited in Fig. 13(a), where the spatial index s is reordered
and θ̂ 3·s’s in the left-bottom cluster have pretty high DoSs
(> 0.99). They correspond to the left region in the surface
response (see Fig. 13(b)), which indicates the pressure variable
mainly influences that particular region of the electronic panel.

V. CONCLUSION

This paper has proposed a novel function-on-function re-
gression model to predict a surface response based on multiple
signal predictors. To conclude, our SSF2R model has the
following main advantages: (a) it is highly interpretable as it
can produce coefficient functions with a hierarchical sparsity
pattern and a similarity structure, (b) it enjoys favorable
efficiency due to an ADMM-based iterative algorithm with
a modest complexity and a parallel fashion to seek the global
optimum, (c) it is extendable to the in-situ manufacturing
process to perform reliable prediction progressively and (d)
it is effective with superior inference and generalization per-
formance for both synthetic and real datasets.

Though originally motivated by a PVD process example,
our method is readily applicable to many other applications
in genetics, climatology, economics, and chemical industry
whenever the predictor and response are both functions. For
long signal predictors with too many time points, the piece-
wise constant basis function in [7] can be used as a prepro-
cessing step to reduce the computational cost of our model.
Finally, as the emerging deep learning networks are capable
of approximating almost any flexible relationships between
predictors and responses, in our future work, we will take
them as a basic framework, and design more tailored layers
and special architectures to exploit the similarity structure and
control the model complexity when both the model input and
output are functions as in our context.
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