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A B S T R A C T

The recent development of smart meters and their incorporation into smart grid systems have allowed the
analysis of household electricity consumption requirement in future. This development makes it possible to give
a reasonable price in next time slots, which is a good tool to induce users to consume electricity more efficiently
and wisely. We obtain the optimal consumption load and prices by establishing the real-time pricing model
balancing supply and demand in every time slot. However, in reality, the user’s reserved consumption re-
quirement load is often different from the optimal load. In some time slots, the difference is large considerably,
which may result in an overload power system. We propose a bounded adjustment strategy to monitor users’
reserved consumption requirements. Using a price demand response mechanism, the power providers induce the
users to adjust their reserved consumption requirements by the change of electricity price in response to var-
iations in the difference between the users’ optimal and reserved consumption requirement loads. An ex-
ponential weighted moving average model is used to forecast the load differences in the next time slots. The
price is adjusted in the next time slots only when the load difference exceeds a given upper or lower boundary to
reduce the frequency of adjustment as far as possible. Our method can ensure the stability of actual consumption
loads after adjustment. Numerical results show that when the parameters are set appropriately, the proposed
scheme can achieve superior performance characterized by the stable actual consumption load close to the
optimal load and balanced energy provision.

1. Introduction

In recent years, energy and environmental issues have become more
and more significant and people’s consciousness of environmental
protection is improving. More and more people are included to use
electricity instead of using directly coal and petroleum having a high
environment pollution because electricity can be generated by clean
energy such as solar, wind and water. Many coal and petroleum in-
stallations are also being transferred as electrical installations such as
electric vehicles, which potentially increase people’s electrical demand.
The increasing electricity demand will compel energy providers to
supply more electricity. A limited generation capacity of electricity
makes energy providers have to take measures to induce users to use
electricity reasonably to ensure the security and reliability of electricity
supply as well as stabilize the energy load within a certain range.

To solve the issue of lack of electricity, smart grids (SG) have been
widely studied and implemented. For instance, both the European

Union and America have selected some cities as pilot projects for SG
(Nezamoddini & Wang, 2017). China is contemplating the transmission
and distribution of SG and has carried out similar trials in Hangzhou,
Beijing and Shanghai. SG can increase energy efficiency and reduce
waste as it can induce users to use properly their electrical equipment in
real time (Chiu, Shih, Pang, & Pai, 2017). With the rapid development
of the advanced power industry and wireless communication technol-
ogies, smart meters occur. As a part of an SG system, smart meters make
a real time interactive network connection among users, electricity
companies and power facilities feasible. These data of smart meters can
help us analyze, forecast and manage consumption load (Wang, Chen,
Hong, & Kang, 2018).

The use of smart meter can also provide the chance of real-time
pricing (RTP) and subsequently stimulate a price-based demand re-
sponse (Mohsenianrad & Leongarcia, 2010; Samadi, Mohsenian-Rad,
Schober, Wong, & Jatskevich, 2010). Comparing with other conven-
tional pricing structures, i.e. critical peak load pricing and time of use
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pricing, RTP can be more flexible and intelligent in using real-time
information between users and the electricity companies. In recent
literature, RTP has been adopted as an energy selling strategy to bal-
ance energy provision in an SG system. Samadi et al. (2010) proposed
an optimal real-time pricing algorithm for demand response aimed at
the maximization of the level of all users’ satisfaction with energy
consumption and the minimization of the power generation cost pro-
vided by energy providers. Chiu et al. (2017) put forward an energy
sale and redemption pricing framework that exploits a time-dependent
pricing strategy. Yang, Zhang, and Ma (2014) came up with an ap-
proach using real-time pricing and energy control, which helps to
match consumer demand with the SG energy supply presuming a rea-
sonable payment to maximize the consumer’s comfort level. Real-time
pricing strategy is developed from a series of methods, such as Markov
chain model (Kobayashi & Hiraishi, 2015), Alternating Direction
Method of Multipliers (Zhu, Gao, & Hou, 2018) and game theory, which
help to manage energy consumption issues (Dai, Gao, Gao, & Zhu,
2017; Srinivasan, Rajgarhia, Radhakrishnan, Sharma, & Khincha, 2017;
Yu & Hong, 2017). Real-time pricing (RTP) strategy is also used in
smart home appliances (Zhu, Gao, Hou, & Tao, 2018). Data-based
stackelberg game strategy is applied on a demand response distribution
system (Lu, Wang, Wang, Ai, & Wang, 2018).

Applying real-time pricing (RTP) strategy, we can obtain an optimal
price and the corresponding theoretical consumption load, which can
often guide suppliers to give a reasonable supply. Hence, the theoretical
consumption load is often stable and reliable. However, in real life,
under the effect of many uncertain factors, the actual consumption load
always changes radically, which may damage the stability of the grid.
More seriously, the instability sometimes results in a large area of
electricity interruption. Obviously, it is impractical to adjust the users’
consumption behavior after abnormal electricity consumption load
occurs.

To stabilize the actual consumption load, we want to design a
strategy to beforehand induce the users’ electricity behavior in order to
make the actual consumption load be close to the theoretical con-
sumption load as far as possible under the users’ demand response.
Smart appliances can help people plan their power usage by reserving
function in future time slots while intelligent terminal equipment such
as phone can also help people change their reservation plan of the
power usage at any time via the network of linking the smart appliances
with intelligent terminal equipment.

In this paper, an engineering process control (EPC) strategy (Box,
1992) is introduced to monitor and adjust the difference between the
users’ reserved consumption requirement load and the theoretical
consumption load in future time slots so that the actual consumption
load cannot drift away from the theoretical consumption load too far at
last. One of the advantages of EPC is that the monitored process re-
quires to be adjusted only when it is suggested as a necessity by the
data. In other words, the adjustment is a “trend” instead of a “point”.
The EPC strategy can provide an effective monitoring and adjustment.
EPC has been adopted in manufacturing and service process. For ex-
ample, Li, Liu, Tsung, Huo, and Su (2016) proposed an EPC strategy in
call centers to monitor the changes in the service level and adjust the
relevant staff numbers. Runger, Lian, and Castillo (2010) proposed an
optimal process control and adjustment system to minimize the ad-
justment cost.

Nowadays, there have been many methods to monitor the change of
a process. Evora, Hernandez, and Hernandez (2015) gave a direct load
control method based on multi-objective particle swarm optimization
algorithm to manage loads on the demand side. Liu, Tsung, and Zhang
(2014) provided a self-starting control chart to detect the location of
parameter shifts by monitoring the process; Li, Tsung, and Zou (2013)
proposed a detection and diagnostic method based on a log-linear
model for process control; Ding, Tsung, and Li (2016) put forward a
control chart indicating the diagnosed shift direction to monitor and
diagnose mixed data types. They also described a control chart which

monitored both the functional relationship and the random explanatory
variables (Ding, Tsung, & Li, 2017). However, applying the EPC method
to control the energy consumption load process is still a challenge and
has never previously been investigated sufficiently in the literature.

Our proposed EPC strategy is based on the users’ demand response
for electricity price. Under the strategy, by adjusting the price we can
minimize the deviation of the difference between the users’ reserved
and theoretical consumption loads in each time slot. However, for an
SG system, it would be unrealistic to adjust the price too frequently as it
may result in the users’ complaint and increase the energy providers’
workload. To avoid the frequent price adjustment and estimate effec-
tively the new values within next time intervals, the upper and lower
boundaries are set. The strategy uses an exponentially weighted moving
average (EWMA) for the difference of users’ reserved electricity con-
sumption requirement load resulting from the data of smart meters and
the theoretical consumption load obtained by a RTP model to forecast
their differences at the next time intervals (Liu, Xue, Zhang, & Zhao,
2013; Shen, Tsung, & Zou, 2014; Zhang, Tsung, & Zou, 2015). Obser-
ving the change of the EWMA values in next time slots, the energy
providers induce the users to use electricity reasonably by adjusting the
electricity price when the EWMA value exceeds the upper or lower
bounds in some time slot. About the research of EWMA, many scholars
have adopted EWMA to predict a new value at next time interval and
generate control charts. He, Wang, Tsung, and Shang (2016) integrated
a log-likelihood-ratio statistic into EWMA and proposed a control chart.
Box (1992) and Box and Luceno (2009) applied EWMA to predict a next
value with a discount factor, namely, smoothing constant. Different
methods for EWMA control charts are proposed. Jiang, Wang, and
Tsung (2012) proposed a variable-selection-based multivariate EWMA
(VS-MEWMA) chart which used dimensionality reduction to monitor
processes and diagnose faults. Nishimura, Matsuura, and Suzuki (2015)
described a multivariate EWMA control chart based on a variable se-
lection. Göb, Lurz, and Pievatolo (2013, 2015) explored the hourly
estimation of electrical consumption based on EWMA with covariates.
Li, Pu, Tsung, and Xiang (2017) integrated an EWMA charting scheme
with a self-starting control chart based on forward variable selection.
Yeong, Khoo, Tham, Teoh, and Rahim (2017) described an EWMA chart
with variable sampling interval to monitor the coefficient of variation.
Xu and Jeske (2018) proposed a weighted EWMA control chart for
monitoring the Weibull scale parameter. Because the monitoring and
adjustment process of EPC is an automatic feedback process by
boundaries, the EPC strategy is often called boundary adjustment
strategy or automatic process control technique (Akhmetsagirov &
Nasibullin, 2016; Baldewijns, Luca, Nagels, Vanrumste, &
Croonenborghs, 2015; Guo, Li, & Laverty, 2013; Lees, Ellen, & Brodie,
2014; Saif, 2015; Zhang, Qiu, Ruan, & Xiao, 2016).

The rest of this paper is organized as follows. Section 2 presents the
real-time pricing model for solving the users’ theoretical consumption
load and optimal price. In Section 3, we give the detailed EPC strategy
monitoring change of the differences between the reserved consump-
tion requirement load and the theoretical consumption load within
different time intervals. Section 4 offers some simulation results and
analysis. In Section 5, we discuss the effect of the different boundaries
and targets for the monitoring and adjustment process. The last is
conclusion and observation.

2. Real-time pricing model

In the paper, we consider an SG system which is composed of an
electricity company, some users who install smart meters and a reg-
ulatory authority. With an interaction infrastructure such as smart
meters, the users and the energy provider can exchange pricing in-
formation in current time slot and next time slots and can obtain every
user’s minimum and maximum power requirement load in future time
slots. The users can consume power reasonably according to the prices
that smart meters show.
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In our system, we divide the time period operating the users’ elec-
tricity consumption requirement load into T time slots, where T | |,
and is the set of all time slots, define N as the number of users and xi

t

as the amount of electricity consumed by every user =i N{1, 2, , }
in every time slot t . Since the consumed appliances are limited and
some must be open like refrigerates, we assume that m x Mi

t
i
t

i
t ,

where mi
t and Mi

t are the minimum and maximum consumption re-
quirement loads of user i in time slot t respectively.

2.1. Users utility function

According to microeconomics, we adopt a utility function to re-
present the users’ level of satisfaction with energy consumption and
assume that the utility function increases as the users’ electricity con-
sumption increases and when the electricity demand reaches a certain
level, it will be saturated. Thus, the utility function can be modeled as
follows (Samadi et al., 2010).

=U x
x x x

x
( , )

( ) /2, if 0 / ,
/2 , if / ,i

t i
t

i
t

i
t

i
t

2

2 (1)

where > 0 is a parameter representing the user’s preference for en-
ergy consumption and > 0 is a pre-determined parameter.

Accordingly, the welfare function for each user is

=W x U x p x( , ) ( , ) ,i
t

i
t

i
t

i
t

t i
t (2)

where W x( , )i
t

i
t is the useri’s welfare function in time slot t , pt is the

announced price in time slot t and p xt i
t is the consumption cost of the

user i in time slot t . Assume that each user tries to achieve maximum
welfare, their utility functions will be maximized and their consump-
tion cost will be minimized.

2.2. Cost function of the electricity company

We denote Lt as the generation capacity of the electricity company
in time slot t and assume that the minimum generation capacity Lt

min

and the maximum generation capacity Lt
max of the electricity company

equal the total minimum and maximum electricity demands of all users,
respectively, to prevent the power system being interrupted, i.e.,

=
L m ,t

i

N

i
tmin

1 (3)

=
L M .t

i

N

i
tmax

1 (4)

We define C L( )t as the generation cost of the electricity company in
time slot t , which is formulated as

+ +C L aL bL c( ) ,t t t
2 (5)

where >a b c0, , 0 are pre-determined cost parameters. Then, the
profit function of the electricity company in time slot t is

=P L p L C L( ) ( ).t t t t (6)

2.3. The real-time pricing model

We formulate the optimal problem that the welfare is maximized,
that is to say, the sum of the users’ utility functions is maximized and
the generation cost of the electricity company is minimized. Obviously,
the total energy consumption should not exceed the generation capacity
of the electricity company at each time slot. Thus, in each time slot
t , the model is depicted as

=
U x C Lmax ( , ) ( ),

y i

N

i
t

i
t

t
1 (7)

=
s t x L. . ,

i

N

i
t

t
1 (8)

where y is represented as:

=y x L i{( , )| , t , m x M , L L L },i
t

t i
t

i
t

i
t

t
min

t t
max (9)

and other variables are summarized in Table 1, which also contains the
variables that other formulas require in this paper.

The objective function (7) is a concave function, the constraint (8) is
linear and hence the feasible set is convex, so the model is a convex
optimization problem. Although we can directly solve it using some
convex programming methods such as the interior point method, the
exact price information cannot be obtained, which is that we need to
know in using the EPC monitoring strategy. However, when Problem
(7)–(9) is transferred as the Lagrange dual problem, the optimal La-
grange multiplier is exactly the electricity price in that time slot
(Samadi et al., 2010). Hence, we need use the Lagrange dual method to
obtain the optimal price and theoretical power consumption load of the
users in each time slot t , t before passing on the EPC strategy.

2.4. Lagrange dual method

Problem (7)–(9) is regarded as a primal problem. Now we give its
Lagrange dual form. In time slot t , the Lagrange function is written
as

=
= =

Z y U x C L x L( , ) ( , ) ( ) ,t
i

N

i
t

i
t

t t
i

N

i
t

t
1 1 (10)

where t is a Lagrange multiplier. We can rewrite (10) as

= +
=

Z y U x x L C L( , ) ( ( , ) ) ( ( )).t
i

N

i
t

i
t

t i
t

t t t
1 (11)

Then, we maximize the Lagrange function

= Z y( ) max ( , ),t
y

t (12)

Thus, the Lagrange dual problem is

=
>

( ) min ( ).t t
0t (13)

Due to the strong duality property, the solution of the primary op-
timization problem (7)–(9) is the same as that of the dual problem (13).

Table 1
Nomenclature.

Indices
i user unit
t time slot
T number of time slots
N number of users
Sets

set of time slots, = {1,2, ,T}
set of users, = {1,2, ,N}

Parameters
Lagrange multiplier
the user's preference
predetermined utility parameter

a predetermined cost parameter
b predetermined cost parameter
c predetermined cost parameter
mi

t minimum power requirement of useri in time slott

Mi
t maximum power requirement of useri in time slott

Variables
xi

t the amount of electricity consumed by user i in time slott
Lt generation capacity of the electricity company in time slott
pt electricity price in time slott
gt effect of price adjustment in time slott
vt accumulated effect of price adjustment in time slott
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Because users are independent, we reformulated (12) as

= +

= +
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where

=f U x x( ) max ( ( , ) ),i t
m x M

i
t

i
t

t i
t

i
t

i
t

i
t (15)

and

=g L C L( ) max ( ).t
L L L

t t t
t t tmin max (16)

Note that the first term of (14) can be resolved into N users’ pro-
blems with (15), and the second term of (14) is a power company
problem in the form of (16). We note that Problem (15) is identical to
the user’s welfare function (2) and also Problem (16) to the company
profit function (6) if we set the price value =pt t , where t is the
optimal Lagrange multiplier in time slot t . Thus, by solving Problem
(13) we can obtain an optimal electricity price =pt t

* and the theo-
retically optimal consumption load = =x xt i

N
i
t

1 in time slot t . The
optimal electricity price pt is sometimes called as shadow price, which
reflects the scarce degree of electricity resource and hence is a key re-
ference standard that the energy providers make the electricity price.

3. EPC adjustment strategy

By solving the dual problem (13) of the real-time pricing model, we
obtain the users’ optimal price pt

* and theoretical energy consumption
load xt in time slot t . xt can guide the power supplier to provide a
reasonable electricity. Thus, the consumption load will become stable
and reliable if the users use electricity according to the theoretical
consumption load in each time slot t . Obviously, it is an ideal state.
In reality, the users’ reserved consumption requirement load feeding
back to the power company through smart meters will not be com-
pletely same as the theoretical consumption load xt . Hence, the energy
providers either adjust the theoretical consumption load to meet the
users’ actual electricity consumption requirement or induce the users to
adjust their reserved power consumption requirements. However, the
limited capacity generating electricity compels the energy providers to
have to make the second choice in next time slots in order to keep the
load reliable and stable.

For this, we give an EPC adjustment strategy to induce the users’
electricity consumption behavior by using power price incentive me-
chanism based on users’ demand response so that at last the users’ ac-
tual consumption load xt can be close to the theoretical value xt as far
as possible.

For this, we give an EPC adjustment strategy to induce the users’
electricity consumption behavior by using price incentive mechanism
based on users’ demand response for the electricity price so that xt is
close to xt as far as possible.

3.1. EWMA estimation

In via of smart meters we can obtain these data about the reserved
electricity consumption requirement loads of the users in the next time
slots, which offer a good information for adjusting the consumption
requirement load exactly and making a reasonable price.

For measuring the deviation degree of the users’ reserved con-
sumption requirement load xt and the theoretical consumption load xt
in time slot t , we define the difference yt between them as follows,

=y x xt t t (17)

For doing a good forecast of the difference +yt 1 in next time slot
+t 1, we use an EWMA of past adjusted difference values to estimate

the difference. The EWMA process for the forecast estimate of the

difference +yt 1 is as follows.
Let y be an adjusted difference value of the initial difference y ,

= t t, 1, . Then the EWMA estimate value +ȳt 1 for the difference
+yt 1 in next time slot +t 1 is:

= + + ++y µ y y y¯ ( ), 0 1t t t t1 1
2

2 (18)

where the constant =µ 1 is called the instability parameter and is
the smoothing constant. Simplifying (18), we get

= ++y µy y¯ ¯ .t t t1 (19)

3.2. Adjustment policy

Now we consider the EPC adjustment strategy to minimize the de-
viation from a target of the load differences. The strategy is that the
price will be adjusted in time slot +t 1 if

+ +y B y D¯ or ¯ ,t t1 1 (20)

where B 0 and D 0 are an upper boundary and a lower boundary,

Table 2
The original data of SG.

NO. The optimal
consumption load
xt*

The reserved
consumption load
xt

The original
load difference
yt= xt-xt*

The original
(optimal)
price =p pt t

1 34.62 26.00 −8.62 0.692
2 41.98 37.50 −4.48 0.840
3 33.73 29.50 −4.23 0.675
4 39.55 35.50 −4.05 0.791
5 36.16 38.50 2.34 0.723
6 36.22 39.50 3.28 0.724
7 37.16 40.50 3.34 0.743
8 37.27 45.00 7.73 0.746
9 37.17 49.50 12.33 0.743
10 45.40 56.50 11.10 0.908
11 35.07 48.00 12.93 0.701
12 42.57 51.50 8.93 0.851
13 43.51 48.00 4.49 0.870
14 44.03 44.50 0.47 0.881
15 37.02 40.50 3.48 0.741
16 34.04 39.50 5.46 0.681
17 40.92 36.00 −4.92 0.818
18 35.74 35.00 −0.74 0.715
19 31.36 31.00 −0.36 0.627
20 35.63 32.50 −3.13 0.713
21 34.04 25.50 −8.54 0.681
22 32.44 23.50 −8.94 0.649
23 32.82 22.00 −10.82 0.657
24 31.52 22.00 −9.52 0.630
25 33.93 27.50 −6.43 0.679
26 38.03 35.00 −3.03 0.761
27 31.12 29.00 −2.12 0.623
28 37.19 33.50 −3.69 0.744
29 34.99 34.50 −0.49 0.700
30 40.22 37.50 −2.72 0.804
31 34.04 42.00 7.96 0.681
32 37.17 44.00 6.83 0.743
33 42.29 52.00 9.71 0.846
34 45.50 59.00 13.50 0.910
35 37.81 51.00 13.19 0.756
36 44.67 54.00 9.33 0.894
37 39.48 47.50 8.02 0.789
38 41.11 44.50 3.39 0.821
39 39.33 42.50 3.17 0.786
40 36.73 38.00 1.27 0.735
41 38.45 36.50 −1.95 0.769
42 31.87 35.00 3.13 0.637
43 29.79 31.00 1.21 0.596
44 33.23 33.50 0.27 0.665
45 32.92 28.50 −4.42 0.658
46 32.06 28.50 −3.56 0.642
47 32.54 26.50 −6.04 0.651
48 32.30 27.50 −4.80 0.645
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respectively, which need to be set beforehand. In the monitoring pro-
cess, if (20) holds, we need take action to adjust +ȳt 1 to a target S we
hope to arrive at. Although +ȳt 1 can be adjusted toS=0when (20) is met
in time slot +t 1, the whole adjustment system is often unstable. Hence,
in this case, it is necessary to choose proper targets E 0 and F 0.
The chosen suitable value E or F will be discussed in Section 5.

By monitoring the whole consumption load process via (20), the
power provider can induce the users to change their electricity con-
sumption behavior according to a price demand response mechanism in
time slot +t 1 as follows.

In the process of monitoring the series =y{ ¯ }t t
T

1, if +ȳt 1 exceeds the
upper boundary B, the power provider need raise the electricity price to
induce the users to reduce their reserved electricity consumption re-
quirements as far as possible in next time slots + +t t1, 2, , while if

+ȳt 1 is below the lower boundary D, the power provider should decrease
the electricity price to encourage the users to consume the electricity in
next time slots + +t t1, 2, . The following theorem give a demand
response mechanism for the electricity price to make a power price
adjustment.

Theorem 3.1. Assume that users are sensitive to the change of the electricity
prices and that the price demand response mechanism is that the change of
the EWMA estimate difference value +ȳt 1 is linearly proportional to the
change of the corresponding EWMA price with a constant k , k 0. Then,
if +y B¯ 0t 1 and +ȳt 1 is adjusted to E B[0, ), the effect +gt 1 of price
adjustment is

=+ +g y E µk( ¯ )/( ),t t1 1 (21)

If +y D¯ 0t 1 and +ȳt 1is adjusted to F D( , 0], the effect +gt 1 of
price adjustment is

=+ +g y F µk( ¯ )/( ).t t1 1 (22)

where µ is defined in (18).

Proof. According to the assumption of linear proportion, if +y Bt̄ 1
and +ȳt 1 is adjusted to E B[0, ), we need adjust the EWMA price +p̄t 1
to +p̄t 1 in time slot +t 1, and we have that

=+ + +E y k p p¯ ( ¯ ¯ ),t t t1 1 1 (23)

where = ++p µp p¯ ¯t t t1 is the EWMA forecast price estimate for the
reserved price +pt 1 in time slot +t 1, pt is an adjusted price of the
current price pt in time slot t and +p̄t 1 is the adjusted value of +p̄t 1 in
time slot +t 1. Hence,

= ++ + +p y E k p¯ ( ¯ )/ ¯ ,t t t1 1 1 (24)

Meanwhile, from the EWMA definition of +p̄t 1, we have that

= ++p µp p¯ ¯ .t t t1 (25)

where the price p̄t means that we must adjust to the price p̄t at time
slot t if the adjusted price +p̄t 1 is taken at time slot +t 1. Hence, from
(24) and (25), we obtain that the effect +gt 1 of price adjustment is

= =+ +g p p y E µk: ( ¯ )/( ).t t t t1 1 (26)

When +y Dt̄ 1 and +ȳt 1 is adjusted to F D( , 0], we obtain that
(22) holds according to the same proof as the above. The proof is
completed. □

By monitoring continuously the consumption load process, the ac-
cumulated effect of price adjustment will be

= = ++
=

+v g v g ,t
i

t

i t t1
1

1
(27)

Thus, under the demand response mechanism for the power price,
when +ȳt 1 exceeds the boundary B or D, the users’ reserved electricity
consumption requirement load +xt 1 and the difference +yt 1 between
the reserved and theoretical consumption loads at time slot +t 1 will
make adjustment as follows:

=+ + +x x kv ,t t t1 1 1 (28)

=+ + +y x x .t t t1 1 1 (29)

Now we give the algorithm of EPC load monitoring and price ad-
justment as follows.

Initialization: Given the original reserved consumption require-
ment load series =x{ }t t

T
1 analyzed from the data of smart meters and the

original theoretical consumption load series =x{ }t t
T

1 and optimal price
=p{ }t t

T
1 computed from (13), then the original consumption load dif-

ference series =y{ }t t
T

1 is computed according to (17). Let the initial ad-
justed load difference be =y y1 1. Set the initial EWMA forecast load
difference = =y S¯ 01 , and hence the initial estimation error

= =e y y y¯1 1 1 1 . Given the initial effect of price adjustment =g 01 , and
hence the initial accumulated effect of price adjustment =v 01 and the
parameters >k 0, E B F D[0, ), ( , 0] and µ [0, 1]. We adjust the
prices and load differences as Algorithm 1 for each time slot t ,

=t T1, 2, , - 1.

Algorithm 1 (EPC Adjustment Strategy).

Step 0: Initialization. Set =t 1.
Step 1: Set = ++y µy µ y¯ (1 ) ¯t t t1 . If (20) is not satisfied, =+g 0t 1 , return Step 2.

Otherwise, return Step 4.
Step 2: Set = ++ +v v gt t t1 1, =+ + +x x kvt t t1 1 1, =+ + +y x x ,t t t1 1 1

=+ + +e y ȳt t t1 1 1.
Step 3: Replace t by t + 1 and go back to Step 1.
Step 4: If +y Bt̄ 1 , set =+ +g y E µk( ¯ )/( )t t1 1 ; If +y Dt̄ 1 , set

=+ +g y F µk( ¯ )/( )t t1 1 ,then return Step 2 .

4. Simulation results and analysis

In this section, we present simulation results and analyze the per-
formance of the EPC monitoring and adjustment strategy. In the real-
time pricing model, we assume that there are 10 users ( =N 10). The
entire time cycle we consider is two consecutive days, which is divided
into =T 48 time slots (hours). The parameters [1, 4] in utility
function (1) are selected randomly for each user and the values are
fixed during the time cycle. The parameter in (1) is assumed to be 0.5,
and the parameters a b, and c in (5) are set to be 0.01, 0 and 0, re-
spectively.

Fig. 1. Comparison of theoretically optimal and actually reserved power con-
sumption.
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4.1. Simulation results for real-time pricing model

By analyzing the data of smart meters we can give the reserved
electricity consumption requirement load series =x{ }i

t
t
T

1 and can analyze
the minimum and maximum consumption requirement load series

=m{ }i
t

t
T

1 and =M{ }i
t

t
T

1 of each user i N[1, ]. Hence, we can obtain the
total reserved consumption load requirement = =x xt i

N
i
t

1 (see Column
3 in Table 2) and the aggregated minimum and maximum consumption
requirement loads = =m mt i

N
i
t

1 and = =M Mt i
N

i
t

1 (see Fig. 1). Now
assume that the original reserved electricity forecast price pt is the
theoretical optimal price pt , i.e., =p pt t at every time slot t T[1, ].

The simulation results for the optimal problem (13) are shown in
Table 2 and Fig. 1. In Table 2, the second and fifth columns contain,

respectively, the theoretical optimal consumption loads =x{ }t t
T

1 and the
theoretical optimal price =p{ }t t

T
1 calculated from model (13) by the

given mt , Mt and concerned parameters. The fourth column offers the
original load difference =y x xt t t , which is calculated from Columns
2 and 3.

Fig. 1 shows the total theoretically optimal power consumption load
and the actually reserved power consumption requirement load before
adjustment in these time slots. As illustrated in Fig. 1, the theoretically
optimal consumption load runs stably in the time slots, but the actual
consumption requirement load has a large fluctuation. This shows that
it is necessary to make an adjustment for the users’ reserved con-
sumption requirement load.

Table 3
Calculation of EPC adjustment strategy with =µ 0.3, = =B D 5.5, = =E F B/2.

No. Original load
difference =y x xt t t

Adjusted load
difference =y x xt t t

EWMA forecast for
load difference +ȳt 1

Adjusted
consumption
requirement Loadxt

Effect of price
adjustment of gt

Accumulated effect
of price adjustment vt

Forecasting error
=e y ȳt t t

1 −8.62 −8.62 0 26.00 0.00 0.00 −8.62
2 −4.48 −4.48 −2.59 37.50 0.00 0.00 −1.90
3 −4.23 −4.23 −3.15 29.50 0.00 0.00 −1.08
4 −4.05 −4.05 −3.48 35.50 0.00 0.00 −0.57
5 2.34 2.34 −3.65 38.50 0.00 0.00 5.99
6 3.28 3.28 −1.85 39.50 0.00 0.00 5.13
7 3.34 3.34 −0.31 40.50 0.00 0.00 3.65
8 7.73 7.73 0.78 45.00 0.00 0.00 6.95
9 12.33 12.33 2.87 49.50 0.00 0.00 9.46

[5.71]
10 11.10 1.25 2.75 46.65 0.20 0.20 −1.50
11 12.93 3.08 2.30 38.15 0.00 0.20 0.78
12 8.93 −0.92 2.53 41.65 0.00 0.20 −3.46
13 4.49 −5.36 1.50 38.15 0.00 0.20 −6.86
14 0.47 −9.38 −0.56 34.65 0.00 0.20 −8.82
15 3.48 −6.37 −3.21 30.65 0.00 0.20 −3.16
16 5.46 −4.39 −4.16 29.65 0.00 0.20 −0.24
17 −4.92 −14.78 −4.23 26.15 0.00 0.20 −10.54

[−7.39]
18 −0.74 4.88 −2.75 40.62 −0.31 −0.11 7.63
19 −0.36 5.26 −0.46 36.62 0.00 −0.11 5.72
20 −3.13 2.49 1.26 38.12 0.00 −0.11 1.23
21 −8.54 −2.92 1.63 31.12 0.00 −0.11 −4.55
22 −8.94 −3.32 0.26 29.12 0.00 −0.11 −3.58
23 −10.82 −5.20 −0.81 27.62 0.00 −0.11 −4.39
24 −9.52 −3.90 −2.13 27.62 0.00 −0.11 −1.77
25 −6.43 −0.81 −2.66 33.12 0.00 −0.11 1.85
26 −3.03 2.59 −2.10 40.62 0.00 −0.11 4.70
27 −2.12 3.50 −0.70 34.62 0.00 −0.11 4.20
28 −3.69 1.93 0.56 39.12 0.00 −0.11 1.37
29 −0.49 5.13 0.97 40.12 0.00 −0.11 4.16
30 −2.72 2.90 2.22 43.12 0.00 −0.11 0.68
31 7.96 13.58 2.42 47.62 0.00 −0.11 11.16

[5.77]
32 6.83 2.38 2.75 39.55 0.20 0.09 −0.37
33 9.71 5.26 2.64 47.55 0.00 0.09 2.62
34 13.50 9.05 3.43 54.55 0.00 0.09 5.62
35 13.19 8.74 5.11 46.55 0.00 0.09 3.63

[6.20] −6.20
36 9.33 −6.62 2.75 38.05 0.23 0.32 −9.37
37 8.02 −7.93 −0.06 31.55 0.00 0.32 −7.87
38 3.39 −12.56 −2.42 28.55 0.00 0.32 −10.14
39 3.17 −12.78 −5.46 26.55 0.00 0.32 −7.32

[−7.66] 7.66
40 1.27 1.68 −2.75 38.41 −0.33 −0.01 4.43
41 −1.95 −1.54 −1.42 36.91 0.00 −0.01 −0.12
42 3.13 3.54 −1.45 35.41 0.00 −0.01 5.00
43 1.21 1.62 0.05 31.41 0.00 −0.01 1.58
44 0.27 0.68 0.52 33.91 0.00 −0.01 0.17
45 −4.42 −4.01 0.57 28.91 0.00 −0.01 −4.57
46 −3.56 −3.15 −0.80 28.91 0.00 −0.01 −2.34
47 −6.04 −5.63 −1.51 26.91 0.00 −0.01 −4.12
48 −4.80 −4.39 −2.74 27.91 0.00 −0.01 −1.64

Notes: The value of square bracket indicates a point at which an adjustment is called for
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4.2. Numerical analysis for EPC adjustment

Our purpose is to achieve peak load shifting and energy saving by
EPC adjustment, and lead to a stable and feasible consumption load. We
monitor the change of the load difference series =y{ ¯ }t t

T
1 by calculating the

EWMA estimate for the series =y{ }t t
T

1 of the adjusted consumption load
difference successively. When some EWMA +ȳt 1 exceeds the given
upper boundary B or the lower boundary D, it shows that the series

=y{ }t t
T

1 will become abnormal again in time slot +t 1. Hence, the next
series = +y{ }j j t

T
1of the adjusted load differences or the series = +x{ }j j t

T
1 of

the adjusted consumption requirements needs to be again adjusted to a
normal level by changing the price inducing the users to update their
consumption requirement based on the price demand response me-
chanism in Theorem 3.1. The price = +p p vt t t after adjustment,

=t T1, 2, , , will be regarded as the actual operations price. In
Algorithm 1, we suppose that the adjusted rate =k 50 and set para-
meters =µ 0.3, = =B D 5.5 and = =E F B/2. The simulation re-
sults implementing Algorithm 1 in =T 48 time slots are shown in
Table 3.

For each time slot t T[1, ], the second column of Table 3 shows the
original load difference yt . The third column provides the load differ-
ence yt after adjustment for yt . The fourth column is the EWMA forecast

estimate +ȳt 1 for the load difference +yt 1 with =µ 0.3, and the initial
value ȳ1 is set to zero. The fifth column gives the users’ consumption
requirement load xt after adjustment. The sixth and seventh columns
are the effect gt of the price adjustment and the accumulated effect vt of
the price adjustment, respectively. Notice that the values in the two
columns are initially zero because the series are normal and unadjusted.
The forecasting error =e y ȳt t t is presented in the final column.

In this illustration, the EWMA forecast value ȳ10 for the load dif-
ference y10 is 5.71 at time slot + =t 1 10 and is the first value to exceed
the upper boundary =B 5.5, which will be adjusted to = =E B/2 2.75,
a given target. Next, the effect of the price adjustment =g 0.210 and its
accumulated effect =v 0.210 are calculated by (21) and (27) respec-
tively, which means that the original price =p 0.90810 will be adjusted
to =p 1.10810 . Then the adjusted consumption load x10 is reduced to
46.65 resulting from (28) with =x 56.510 and hence the adjusted load
differencey10is 1.25, which comes from (29) with =x 46.6510 and

=x 45.4010 from Table 2. In Table 3, the second adjustment occurs at
+ =t 1 18 when the EWMA forecast value ȳ18is 7.39, which exceeds

Fig. 2. Process of EPC monitoring and adjustment with =µ 0.4, =B 3.5,
=D 3.5, =E B/2 and =F D/2.

Fig. 3. Accumulated effect of price adjustment with =µ 0.4, =B 3.5, =D 3.5,
=E B/2and =F D/2.

Table 4
Number of adjustments and SD (σ) for various =E F( ) and =B D( ) at =µ 0.3.

=E F( ) =B D( ) Number of adjustments SD(σ)

B/2 2 16 4.288
B/2 3 11 4.375
B/2 4 7 4.594
B/2 5 8 4.842
B/2 6 6 5.060
B/2 7 5 5.260
B/2 8 5 6.526
B/2 9 5 6.004
0 2 17 4.527
0 3 15 5.941
0 4 9 4.790
0 5 7 5.572
0 6 6 6.314
0 7 5 6.023
0 8 9 9.656
0 9 11 11.581

B9 /10 2 19 4.133
B9 /10 3 18 4.382
B9 /10 4 11 4.947
B9 /10 5 15 4.800
B9 /10 6 10 4.870
B9 /10 7 8 5.189
B9 /10 8 7 5.435
B9 /10 9 5 5.570

Fig. 4. Number of adjustments with different targets.
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the given lower boundary =D 5.5. This need to be adjusted to the
target =F 2.75 that we hope to arrive at. The effect of the price ad-
justment will be =g 0.3118 units from (22), which means that

= + =p p  0.20 - 0.31 0.60518 18 . With the accumulated price adjustment
= =v 0.20 0.31 0.1118 from (27), the original price =p 0.71518 will

be adjusted by −0.11 in fact. The adjusted consumption load x18 is
40.62 by (28). The adjusted load difference is =y 4.8818 by (29).

We can discern and analyze from Table 3 that the number of ad-
justments in total is five.

The empirical average adjustment interval (AAI) is equal to
47/5 9, which means that the adjustment process with =B 5.5 and

=D 5.5 shows that only five minor changes were needed to generate a
much more stable process with the empirical AAI 9. The standard de-
viation σ (SD(σ)) of residuals is calculated by

= = =
= =

e T e/( 1) /47 5.34
t

T

t
t

t
1

2

1

48
2

which shows all points are inside the 3σ boundary so there is no evi-
dence of special causes.

For further learning about the parameter µ, the boundaries B and D
and the target values E and F for the effect of the adjustment me-
chanism, we take again =µ 0.4, =B 3.5, =D 3.5, =E B/2and

=F D/2 in Algorithm 1. The results of the monitoring and adjustment
are shown in Figs. 2 and 3.

From Fig. 2, we can see that the series of the load differences after
adjustment are more stable than that of the original load differences,
which can reach the desired effect. The adjustment chart shows that ten
minor changes were needed to produce a much more stable process
with an empirical AAI of 47/10= 4.7 and no points outside the 3σ
limits show that there is also no evidence of special causes.

Fig. 3 is the accumulated effect of the price adjustment. From Fig. 3,
we can learn about the fact that the accumulated effect can finally
become close to zero in the whole adjust cycle, which is similar as
Table 3. This shows that the adjustment is only to balance the load
differences and achieve peak load shifting without increasing the price
of the system.

5. Discussion

Considering the stability of the system in monitoring and adjust-
ment, we have to concern the value E and F we hope to reach. Different
E and F have different adjustment frequency of the price and load
difference. We do not hope to adjust the system too frequently because

adjustment too frequent will increase the workload of energy providers
and users’ complaint. So far, we still haven’t found a strategy to com-
pute the optimal E and F . Thus, we have to rely on the empirical E and
F from Algorithm 1 instead of the optimal E and F . Because the optimal
state is that the actual load requirement equals the theoretical load, the
value (EWMA value after adjustment) should be theoretically set to 0
when we apply the EPC adjustment policy. Now we adopt the EPC
adjustment strategy with parameters =µ 0.3, different =E F( ) and
various =B D [2, 9] to discuss the effect of change.

The simulation results from the implement of Algorithm 1 over 48
time slots are shown in Table 4 and Fig. 4. Fig. 4 shows the number of
adjustments for =E F( ) values of 0, B/2 and B9 /10. From Fig. 4, we
can see that in the whole, the number of adjustments with

= =E F B9 /10 seems to be the greatest while that with = =E F B/2
the smallest.

Next, the standard deviations (σ) of residuals about various E values
are shown in Fig. 5. From Fig. 5, we can see that the standard deviations
(σ) of residuals with = =E F B9 /10 is the best among them in the
whole.

Furthermore, from Figs. 4 and 5, we can also see that the adjustment
series with = =E F 0 is unstable. Hence, we discern that we can
choose proper E and F by weighing the number of adjustments and
standard deviation in reality.

6. Conclusion

The paper introduces an EPC monitoring and adjustment strategy to
monitor the users’ reserved electricity consumption requirement load
and gives a price demand response mechanism to induce the users to
use reasonably electricity. By setting an upper boundary and a lower
boundary for the EWMA forecast of the difference between the theo-
retical consumption load computed from a given real-time pricing
model in SG and the reserved consumption load requirement obtained
by smart meters, the power providers can automatically monitor the
change of the load differences in every time slot. Under the strategy and
the price mechanism, if the forecast value exceeds the boundary in
some time slot, the users will be induced to adjust their consumption
requirement loads. Applying the strategy, energy providers can balance
the consumption requirement load and power provision by avoiding
frequently price adjustment. Therefore, the method provides an im-
portant reference for managing electricity load.
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