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A B S T R A C T

A large number of real-time quality data are collected through various sensors in the manufacturing process.
However, most process data are high-dimension, nonlinear and high-correlated, so that it is difficult to model the
process profiles, which restricts the application of conventional statistical process control technique. Motivated
by the powerful ability of deep belief network (DBN) to extract the essential features of input data, this paper
develops a real-time quality monitoring and diagnosis scheme for manufacturing process profiles based on DBN.
The profiles collected from a manufacturing process are mapped into quality spectra. A novel DBN recognition
model for quality spectra is established in the off-line learning phase, which can be applied to monitor and
diagnose the process profiles in the on-line phase. The effectiveness of DBN recognition model for manufacturing
process profiles is demonstrated by simulation experiment, and a real injection molding process example is
applied to analyze the performance. The results show that the proposed DBN model outperforms alternative
methods.

1. Introduction

Many sensors are applied in a modern production line to collect
huge amounts of process data. In examples, more than million pieces of
tonnage signal data per minute are acquired from an progressive
stamping process (Zhou, Liu, Zhang, Zhang, & Shi, 2016), and in more
than 1034 oven runs, 160 temperature data points in each run are
obtained within 500-second data collection period (Jensen, Grimshaw,
& Espen, 2016). With the rapid development of data acquisition tech-
nology, massive process data, which reflects the operating status of a
process, can be collected to monitor and improve the process perfor-
mance and production quality (Ge, Xu, & Du, 2008; Grasso, Menafoglio,
Colosimo, & Secchi, 2016; Pacella, 2018; Qin, 2014; Wang, Kim, Huo,
Hur, & Wilson, 2015). The quality of a process is better characterized by
the relationship between a response variable and one or more ex-
planatory variables rather than the distribution of variables (Woodall,
Spitzner, Montgomery, & Gupta, 2004). Monitoring such a relationship
is usually called profile monitoring problem. How to monitor these
profiles by using effective methods has become a hot topic, which could
significantly improve the product quality of a manufacturing process.

In the existing literatures, the research methods of monitoring
profile can be divided into two categories: linear and nonlinear. Linear

profiles are widely employed in some manufacturing processes, such as
calibration process and stamping processes. In order to detect a mean
shift or other abnormal changes in linear profiles, control charts are
applied to monitor some estimated parameters, such as intercepts and
slopes (Kang & Albin, 2000; Noorossana, Eyyazian, Amiri, & Mahmoud,
2010; Zou, Tsung, & Wang, 2007). However, the linear assumption is
not always valid in practice. In the recent years, various methods have
been proposed to address the nonlinear profile monitoring problem for
some manufacturing process (Kazemzadeh, Noorossana, & Amiri, 2008;
Chen & Nembhard, 2011; Grasso et al., 2016). Chou, Chang, and Tsai
(2014) developed a proper process monitoring strategy for monitoring
multiple correlated nonlinear profiles. Zhang, Ren, Yao, Zou, and Wang
(2015) studied multivariate profiles based on the regression adjustment
method. Besides, Jensen et al. (2016) proposed a nonlinear model for
reducing the oven temperature profiles in a manufacturing process to a
smaller set of parameters estimated.

Implementation of the above monitoring profile schemes usually
assumes a baseline parametric model of the specific distribution,
against which new observations are compared in order to identify sig-
nificant departures from the baseline model. The baseline model is
often unknown and estimated from a limited phase I sample in practice.
In order to warrant the accurate of the baseline model, a sufficiently
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large reference sample of in-control data is needed. However, in many
cases, the reference samples may be small and, therefore, it may not be
possible to accurately estimate the in-control parameters, which
strongly deteriorate the performance of the monitoring methods (He,
Jiang, & Deng, 2016).

When the reference sample collection is limited, one has to apply
change point model to monitor the process (Hawkins & Qiu, 2003),
which isn’t necessary to construct a baseline model. Nevertheless, most
change-point control charts assume that the data follow a Gaussian
distribution. Due to the complexity of the production process and the
different types of sensors used, the normal distribution assumption may
be violated in these process applications (Fan, Han, & Liu, 2014).

It would be a challenging work to monitor a process without a
baseline model, especially when the targeting process doesn’t follow a
normal distribution. Fortunately, intelligent approaches based on arti-
ficial neural network (ANN) (Zhou et al., 2016) and support vector
machine (SVM) (Liu & Zhou, 2015, 2016) have been widely applied for
manufacturing process monitoring and fault diagnosis due to their ad-
vantages in handling complex data. Such techniques can effectively
overcome the limitations of conventional statistical process control.
These intelligent methods can be naturally extended to monitoring
profiles. Pacella and Semeraro (2011) proposed a roundness profiles
monitoring model based on unsupervised neural network algorithm.
Hosseinifard, Abdollahian, and Zeephongsekul (2011) monitored pro-
files via an ANN approach. Atashgar, Amiri, and Nejad (2015) mon-
itored Allan variance nonlinear profile using artificial neural network
approach.

The existing researches transform the process monitoring problem
to a supervised learning problem so that any classifiers can be used.
However, to our best knowledge, the deep belief network (DBN) model
has not been applied in monitoring manufacturing process profiles.

Considering the situation that we have both in-control and out-
control dataset, which don’t follow any distributions, and have no
baseline model, we propose a nonparametric process monitoring
scheme for manufacturing process profiles based on DBN. The pattern
between a sample covered with moving windows from the input stream
and the reference dataset is compared by the DBN. Data experiments
show that the proposed DBN-based monitoring scheme has some ad-
vantages and outperforms than the existing methods.

The key contributions of this work are as follows. Firstly, the pro-
posed DBN model is a nonparametric process monitoring procedure,
which can be used to monitor any processes without distribution as-
sumption. Secondly, the DBN model is different from conventional
distance-based process monitoring scheme such as the T2 chart, since
the monitoring metric defined in the DBN model is compared the pat-
terns between a sample covered with moving windows from the input
stream and the reference, whereas the conventional method measures
the distance between the centers of the reference dataset and the
moving window dataset. Thirdly, considering the limited and im-
balanced reference dataset in real applications, the structure of pro-
posed DBN model is dynamic and can be adjusted based on the sample
size of the reference.

The remainder of this paper is organized as follows. In Section 2, a
motivating example of injection molding process is introduced. In
Section 3, the architecture of the Gauss-Bernoulli restricted Boltzmann
machine (GBRBM) and a novel DBN model for recognizing the quality
spectrum are proposed. Besides, the DBN framework for monitoring and
diagnosing the manufacturing process profiles is developed, which in-
cludes off-line learning phase and the on-line monitoring and diagnosis
phase. In Section 4, the effectiveness analysis of proposed DBN model is
demonstrated by the simulated data. The optimal structure of DBN
model and the effect of weighting parameter are tested. In Section 5, a
real example of monitoring and diagnosing profiles from the injection
molding process is applied and the performance of proposed method is
compared with alternative methods. Suggestions and directions for
further research are discussed towards the end of the paper.

2. Process profiles and quality spectra

2.1. A motivating example

The injection molding process is a typical multivariate manu-
facturing process and has three major characteristics: rapid data var-
iation, high sampling rate and multiple monitoring variables. Usually,
the injection molding process has four stages: padding, packing, cooling
and demolding. In the padding stage, the shift in temperature and
pressure in the mold cavity may generate weld marks, which are the
common defects. Weld marks not only affect the product appearance,
but also break the microstructure. The concentrated stress causes the
injection product to rupture easily. Thus, the operational conditions of
temperature and pressure should be monitored in the padding stage. In
order to prevent the shrinkage of injection products, the pressure in the
mold cavity is increased sequentially to improve the product density in
the packing stage. However, if the product is too densely packed, de-
fects will appear, such as flash and overflow. In this stage, the pressure
is a critical monitoring variable. In the cooling stage, the injection
product is solidified to improve the product quality further. Usually,
cooling imbalance will give rise to warpage. Hence, the temperature is
also an important variable that needs to be monitored. In the last de-
molding stage, the mold is opened using a proper method to ensure
quality of production.

One reciprocating screw injection molding process from a Chinese
manufacturing company motivated us to perform this study, and the
screw injection molding machine is shown in Fig. 1. The temperature of
the charging barrel and mold, and the pressure in the mold can be
measured by the corresponding sensors over time. The locations of
these sensors are shown in Fig. 1.

There are 10 quality monitoring variables in the injection process,
denoted by xi, (i = 1, 2, …10), which are measured by seven tem-
perature sensors, denoted by STj, (j = 1, 2, …7), and three pressure
sensors, denoted by SPj, (j = 1, 2, 3), shown in Table 1.

In reciprocating injection molding, the total processing time is 20 s.
The quality of production is characterized by the temperature or pres-
sure where the main challenge lies in how to monitor these variables
during the injection process.

2.2. Manufacturing process profile

Usually, the profile is well known as a set of measurements with a
response variable and some explanatory variables (Woodall, 2007) and
is formed by the data sequence of quality characteristics (Fan, Jen, &
Lee, 2016; Jensen et al., 2016). Such profiles include the thickness
measurements of semiconductor wafers from a slicing process (Liu, Jin,
& Kong, 2018), and radius measurements as a function of a turning
process (Colosimo, Semeraro, & Pacella, 2008). In this paper, the pro-
cess profile can be defined as a set of measurements from a manu-
facturing process with multiple quality monitoring variables over time.
The process profile monitoring requires more attention to be paid to the
sequential data streams from the manufacturing process than to the
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Fig. 1. A reciprocating screw injection molding process.
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quality characteristics.
With the sensors installed in the production line, a large number of

observations can be obtained during the manufacturing process. The
manufacturing process profile can be represented by the observation
matrix X , which indicates the running status during the process. The
process profile is shown in Eq. (1),

=
…
…

… … … …
… …

X
x x x
x x x
x x

n
n

m mn

11 12 1
21 22 2

1 (1)

where xij (i= 1, 2, …, m, j= 1, 2, …, n) is the jth measurement of the
ith monitoring variable during the process.

The observations from the injection molding process form a typical
manufacturing process profile. Examples of injection molding process
profiles are shown in Fig. 2. In these examples, there are 10 monitoring
variables during the process so =m 10. The whole process lasts 20 s and
the sampling frequency is 20ms, which means that 1000 measurements
of each monitoring variable can be observed from the normal process
and the abnormal process with flash defect respectively, so =n 1000.

The monitoring window size is 20 s in the injection example. The

choice of window size is a critical parameter in the manufacturing
process, because the window size is related to the shape of abnormal
patterns that we want to detect. However, all kinds of abnormal pat-
terns can be seen in a whole process at least if the defects happened.
Thus, we suggest that the length of the manufacturing process be taken
as the window size, such as the 20 s in the injection example.

The 10 quality monitoring variables in Fig. 2 are nonlinear and
correlated. Due to their complex relationship, it is difficult to observe
the difference between the profiles without defect and the ones with
flash directly in Fig. 2. Fortunately, a gray-scale image is a useful tool to
represent information from a process profile, and it will be introduced
in the following.

2.3. Quality spectrum of the process profile

For reasons mentioned above, it is difficult to detect a shift from a
process profile directly. Even though the signal of a shift can be de-
tected by quality techniques, the root cause of an abnormal status
cannot be traced without visualization, which poses a great challenge to
multivariate process diagnosis. In the literatures, some equipment
failure data, which are highly correlated and nonlinear, can be visua-
lized using a digital image (Amar, Gondal, & Wilson, 2015; Sun, Gao,
Gao, Gao, & Wang, 2015).

A grayscale image is formed by the grayscale values between black
and white, and can represent data much more accurately than a binary
image. In this paper, the process profiles can be mapped into grayscale
images based on the operating conditions of the manufacturing process.
Such grayscale images can present the normal or abnormal running
status of the process, as well as show the boundary or the edge if the
observations in the data matrix change, so that it is easy to detect edges
or determine abnormal causes using a DBN algorithm. The grayscale
images can intuitively present the quality information implied by the
process profiles, so the image can be defined as a quality spectrum. In a
quality spectrum, the current process is stable if the gray stripe is
uniform and the grayscale changes smoothly, which is called a normal
quality spectrum. In an abnormal quality spectrum, the gray stripe is
mutated and some significant boundaries can be found, which indicates
that an abnormal change has occurred in the process.

For generating the grayscale image of a process profile, the ob-
servations in a observation matrix, X, should be standardized first,
which is given by

=x
x x

x x

min( )

max( ) min( )ij

ij
j

ij

j
ij

j
ij (2)

xij can be mapped into a grayscale using Eq. (3), which means a
grayscale image can be formed by mapping all of the observations.

= ×g xINT[ 255]x ij (3)

In Eq. (3), gx is the grayscale vaule of xij, and g [0, 255]x . The
grayscale image is black when =g 0x and white when =g 255x . So the
process profile has been represented as a grayscale image to visualize
the operating status of the manufacturing process.

In the motivating example, two common defects, flash and warpage,
often occurred in the process. According to historical data, these defects
indicate six abnormal statuses of the process. Under a different ab-
normal process, the quality spectrum of a process profile will be dif-
ferent. The corresponding relationships between the process status and
the spectrum are shown in Table 2.

In order to monitor the normal profile, 10 monitoring variables are
continuously sampled by every 20ms in 20 s from the normal process of
injection molding. In the same way, six abnormal profiles can be col-
lected from the corresponding process status.

According to Eqs. (2) and (3), a normal and six abnormal process
profiles of the injection molding can be mapped into their quality
spectra respectively. The normal and two abnormal quality spectra, as

Table 1
Quality monitoring variables.

No. Variable name Sensor Target value

x1 Barrel temperature 1 ST3 160 °C
x2 Nozzle temperature ST4 120 °C
x3 Barrel temperature 2 ST2 200 °C
x4 Heating water temperature ST5 140 °C
x5 Barrel temperature 3 ST1 200 °C
x6 Cooling water temperature ST6 25 °C
x7 Internal mold temperature ST7 30～130 °C
x8 Injection pressure SP1 90MPa
x9 Holding pressure SP2 60MPa
x10 Internal mold pressure SP3 0～60MPa
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Fig. 2. Process profiles for 10 monitoring variables.

Y. Liu, et al. Computers & Industrial Engineering 136 (2019) 494–503

496



seen in Fig. 3, are chosen for illustration purpose.
In the normal quality spectrum, the grayscales of each monitoring

variable change naturally and smoothly, and there are no obvious
changes in brightness in Fig. 3(a). In Fig. 3(b), the grayscales of X2 and
X8 change significantly in the quality spectrum. Thus, the grayscale
value of the image becomes smaller after a shift, which can generate a
distinct boundary.

The variation in the grayscale from dark to light indicates that the
observations of X2 and X8 are shifted by a special cause. In other words,
the nozzle temperature and injection pressure of the current process are
in a state of upward shift. If the injection pressure shifts suddenly in the
process, the capacity of melting materials in the mold cavity will in-
crease, so that the material will overflow which usually leads to flash. If
the nozzle temperature rises abruptly during the injection process, the
melting degree of the material in the mold cavity will be increased, also
leading to a flash.

The process profiles collected from injection modeling can be re-
presented precisely by the quality spectrum, F13, which describes how
flash occurs when the nozzle temperature and injection pressure are
shifted.

In Fig. 3(c), the grayscales of X4 and X6 change obviously in the
quality spectrum F23. The variation in the grayscale from dark to light
indicates that the observations of X4 and X6 are shifted by a special
cause. In other words, both heating water temperature and cooling
water temperature of the current process are in a state of upward shift.
In the injection molding process, if the control of heating and cooling is
mismatched, the stress of the injection product will be uneven, which
will lead to warpage. The process profiles collected from injection
modeling can be represented precisely by their quality spectra which
describe how warpage occurs when the heating water temperature and
cooling water temperature are shifted.

From the above discussion, the normal and abnormal quality pro-
files in a manufacturing process can be visualized clearly and accurately
by their quality spectra. How to identify the abnormal quality spectra is
the next problem in the profile monitoring and diagnosis.

3. The DBN recognition model for quality spectra

3.1. The structure of the DBN model

The DBN is an advanced network based on deep learning and can be
applied to analyze high-dimensional data sequences, such as image or
motion capture data (Hinton, Osindero, Welling, & Teh, 2006;
Najafabadi et al., 2015). DBN is a generative model with multiple
layers, each of which is made up of an RBM. An RBM is a two-layer
network, which only has good recognition ability for binary images.
However, the grayscale image of a process profile is not a binary image,
so that a novel DBN model should be developed for recognizing the
quality spectra of a process profile.

The GBRBM is a two-layer network and has good recognition ability
for non-binary images (He, Wang, Li, & Zhou, 2016). Therefore, the
GBRBM is first applied to recognize the quality spectrum in the DBN
model instead of the RBM in this paper. The architecture of the GBRBM
is shown in Fig. 4.

As stated above, the novel DBN used in this paper is composed of
many GBRBMs and an output layer. The weight matrices and bias
vectors of GBRBMs can be determined by training GBRBMs sequen-
tially. A GBRBM is made up of a visible layer v and a hidden layer h,
where vi is the ith visible unit (i= 1,2,…,p) of v, hj is the jth hidden
unit (j= 1,2,…,q) of h, ai and bj are their biases and wij is the weight
between them. All visible units are connected to all hidden units, and
there are no connections between any two units in the same layer. The
visible units of GBRBM are linear units with independent Gaussian
noise, whereas the hidden units are binary stochastic units. GBRBM is
an energy-based stochastic neural network. The joint probability dis-
tribution over visible layer v and hidden layer h is defined by an energy
function.

The energy function of the GBRBM is given by

=
= = = =

E v h v a b h v w h( , ; ) ( )
2i

m
i i

i j

n

j j
i

m

j

n
i

i
ij j

1

2

2
1 1 1 (4)

Table 2
The corresponding relationships between the process and spectrum.

Defect Process status Quality
spectrum

None Normal F0
Flash Upward shift in injection pressure F11

Upward shift in nozzle temperature F12
Upward shift in injection pressure Upward shift in
nozzle temperature

F13

Warpage Upward shift in heating water temperature F21
Upward shift in cooing water temperature F22
Upward shift in heating water temperature
Upward shift in cooling water temperature

F23
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Fig. 3. Quality spectra of injection process profiles.

Fig. 4. Architecture of GBRBM.
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where = w a b{ , , }ij i j is the parameter set of the GBRBM. i is the
standard deviation of the Gaussian noise for the visible unit i. The joint
probability density function of the visible layer and a hidden layer, (v,
h), can be obtained by Eq. (5).

=p v h
Z

E v h( , ; ) 1
( )

exp( ( , ; ))
(5)

=Z E v h dv( ) exp( ( , ; ))h is the partition function. The marginal
density function of the visible layer v is given by summing over all
possible hidden units.

=p v E v h
E v h dv

( ; ) exp( ( , ; ))
exp( ( , ; ))h h (6)

Because there are no direct connections between hidden units in the
GBRBM, they are independent of each other. So, it is very easy to obtain
the probability of hj for a given v when hj is set to 1.

= =
+ ( )p h v

w a
( 1 | ) 1

1 exp
j

i ij
v

j
i
i (7)

For the same reason, it is also very easy to obtain the probability of
vi for a given h when vi is set to x.

= =p v x h( | )

exp

i

x b h

1
2

( )

2

i

i i j j ij

i

2

2
(8)

Because of =p v h p v h( | ) ( | )i i , the new visible units can be re-
structured.

The parameters of the GBRBM should be updated according to the
following equations:

= v h v h( )ij i j data i j recon (9)

=a v v( )i i data i recon (10)

=b h h( )j j data j recon (11)

where , data and recon are the learning rate, the expectation of the
original data and the expectation of the restructured data respectively.

All GBRBMs of DBN are trained by the unsupervised algorithm
presented above. But the performance provided by the unsupervised
training is limited and classification cannot be achieved without output
layer. Thus the BP algorithm can be applied to fine-tune the weight
matrices and bias vector parameters of GBRBMs and output layer to
minimize the loss function, and then the DBN recognition model of
quality spectra can be constructed. The architecture of the proposed
DBN model for manufacturing process profiles is shown in Fig. 5. The
input and output of the DBN recognition model are the visible layer of
GBRBM1 and the output layer respectively. There are n hidden layers
in the DBN model, where the visible layer of one GBRBM is the hidden
layer of the previous GBRBM. For example, in GBRBM1, h1 is the hidden
layer; meanwhile, it is also the visible layer of GBRBM2. The tuning
parameters, such as p, q and n in the DBN model, would determine the
structure of the recognition model.

3.2. A DBN recognition model for imbalance data

The fine-tuning process aims at minimizing the loss function, that is,
the error of mean square (MSE) between expected output and actual
output. Usually, the loss function of DBN can be expressed as

=
=

E
m

y y1 ( )P
i

m

pi pi
1

2

(12)

where ypi and ypi denote actual value and expected value of ith output
neuron respectively, m is the number of output nodes. When using MSE,
there is a hypothesis that the predicted errors of each output node are of
equal importance. However, this assumption will hold only when the

number of samples in each normal or abnormal class is approximately
the same. In other words, the performance of DBN recognition model
will degrade when the training samples for the normal class greatly
outnumbers the ones for the abnormal class. In fact, a large number of
abnormal data is unavailable to collect in a real manufacturing process.
Thus the original loss function needs to be modified in order to address
this imbalance problem. We add a weighting parameter 1 N

N
i

total
in loss

function that assigns different importance to each abnormal class ac-
cording to their specific sample size. Meanwhile, a penalty term

w| |N ww
is considered to overcome the overfitting problem caused by

small sample size of abnormal class, where w denotes the weights in the
DBN recognition model, and Nw is the number of weights in DBN. The
loss value of the pth process quality spectra is defined as

= +
=

E N
N

y y
N

w1 ( ) | |P
i

m
i

total
pi pi

w w1

2

(13)

where Ntotal represents the total number of training samples. Ni is the
sample size of training set that belongs to ith class of quality spectra. λ
is the tuning parameter for the sparsity of weights between neuron. The
proposed loss function has two properties. First, the weighting para-
meter provides the minority class with more importance in loss func-
tion. In this way, the misclassification of the samples from minority
class can be punished more severely than that from majority class.
Second, the added penalty term can reduce the complexity of DBN re-
cognition model, so that the overfitting problem can be solved.

3.3. The framework for monitoring and diagnosing process profiles

A framework for monitoring and diagnosing manufacturing process
profiles using the DBN recognition model (DBNRM) is proposed in this
subsection. This framework can be divided into phase I and phase II. In
phase I, it aims to train the DBNRM off-line from the collected quality
spectrum data and obtain an appropriate DBN model for recognizing
quality spectra. After learning in phase I, this DBNRM can be applied to
monitor and diagnose the manufacturing process profile on-line in
phase II. The framework is shown in Fig. 6, and the details are in-
troduced in the following.

The goal in phase I is to generate a DBN recognition model for
abnormal quality spectrum using learning algorithms. The off-line
learning procedure includes two steps as follows: The first step is to
train each GBRBM in DBN recognition model. Unlabeled process quality
spectrum is used to train GBRBMs layer by layer and the parameters can
be updated. The second step is to fine-tune the whole DBN network
using BP algorithm. A few labeled process quality spectra are used to
train output layer and further update GBRBMs.

After training in the phase I, the DBN recognition model can be
applied to monitor and diagnose the process profiles in the phase II.

The purpose of phase II is to monitor and diagnose the quality
spectra on-line with the DBN recognition model trained in phase I. The
key problem in this phase is to identify the abnormal quality spectra
and determine the root causes of abnormal process profiles simulta-
neously. There are three main steps in this phase.

The first step is to collect the profiles from a real-time process. The
profiles are collected through the monitoring window. The size of the
monitoring window should be determined by the product processing
time, so that the profiles can be mapped into a suitable spectrum.

The second step is to monitor the process profiles. The quality
spectra in the current monitoring window will be recognized by the
DBNRM trained in phase I. If the predicted value of the first output node
in this model is close to 1, the quality spectrum is the normal one and
thus the process is in control. Then the sliding window will move for-
ward to collect new observations until the DBNRM triggers an alarm. If
any predicted value of other output nodes is larger than first node, the
spectrum is abnormal, which means the process is out of control.
Therefore, it is necessary to diagnose the potential abnormal variables
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which can be determined from the abnormal quality spectrum.
The last step is to diagnose the abnormal quality spectra. The ab-

normal class is recognized by the DBNRM and the root cause is found.
According to the above phase I and phase II, the manufacturing

process profiles can be monitored and diagnosed simultaneously in real
time. It benefits from the collection of real-time quality profiles and the
powerful learning ability of the DBN recognition model.

4. Effectiveness analysis

The effectiveness of the proposed method depends on the structure
of DBNRM and the setting of important parameters, which will be in-
vestigated by the simulated experiments in this section. To evaluate the
ability of detecting the abnormal pattern, the accuracy of test data
(ATD) index is applied, which ATD is a ratio of the number of samples

GBRBM1 GBRBM2
Output
LayerGBRBMn

Fig. 5. Architecture of the proposed DBN model.
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Quality spectra
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Fig. 6. Monitoring and diagnosis framework of DBNRM.
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recognized correctly and the total number of samples. When a process is
out-of-control, the DBNRM will be expected to detect the abnormal
pattern as precisely as possible. Meanwhile, when the process is in
control, the DBNRM also wants to recognize the normal pattern more
accurately, so that the higher accuracy indicates the better effective-
ness. We compare the accuracy of test data for a given training
error= 0.1. So, larger ATD indicates better effectiveness. The following
experiments consist of different scenarios to show the effectiveness
under the different DBNRM structures. In all the experiments, the
training data and test data are generated from an injection molding
process of display panel in ModeFlow 2015. These data not only do not
follow any distribution but also are difficult to found a baseline model.

4.1. The structure of DBNRM

The structure of DBNRM is determined by the numbers of hidden
layer and hidden layer nodes. A lot of studies indicate that the DBN
model with more hidden layers outperforms than one. However, too
many hidden layers may result in inefficiency and overfitting. Thus the
structure of DBNRM will be determined layer by layer as below.

We first consider the initialization of DBNRM with one hidden layer.
Twenty scenarios are considered during the initialization, in which the
hidden layer nodes ranging from 100 to 2000. The best recognition
accuracy can be inferred with one hidden layer. Then, DBN models with
two hidden layers are initialized. Since the best accuracy of 1-hidden
layer DBNRM occurs before, the number of first layer nodes is set to
find the optimal structure in the 2-hidden layer DBNRM. In addition,
the number of the second hidden layer nodes ranging from 100 to 2000
is checked in the initialization. In the similar way, the different struc-
tures of DBNRM would be tested layer by layer. The accuracy we ex-
pected will increase until the best structure finding out. If the accuracy
is decreasing, the former structure of DBNRM would be selected as the
best structure. Besides, 15,000 data sets of normal pattern, abnormal
pattern are generated respectively. Among that, 5000 sets are training
data, and the left are test data. The result is shown in Table 3.

Table 3 shows the variation of accuracy as changing the hidden-
layer numbers, where the boldface values represent the highest accu-
racy in each layer. It can be inferred that the prediction accuracy ob-
viously improves with the increase in hidden-layer numbers at early
stage. The recognition accuracy is optimal when hidden-layers number

is 4. Therefore, four hidden layers are best chosen for the DBNRM. The
optimal structure of the DBNRM is determined as 6000-1400-1500-700-
200-2, in other words, the structure with six thousand input nodes, four
hidden layers with 1400, 1500, 700, and 200 hidden nodes, and two
output node, is the optimal one by training. Then, the DBNRM with this
optimal structure will be applied to determine its important parameter
in the following.

4.2. The parameter of DBNRN

The is a critical parameter for the DBNRM to overcome the
overfitting problem. In an extreme case, if = 0, the DBNRM will re-
duce to the primary DBN model with loss function as Eq. (12), thus this
DBNRM will face the overfitting problem easily. Conversely, if

+ , the weight of DBNRM will close to zero so that the weights
of DBN model will be sparse, which indicate that the recognition ability
is very poor. So the relationship between the recognition accuracy of
DBNRM and parameter ranging from 0 to 1 would be checked by ten
scenarios. The result is shown in Fig. 7.

From Fig. 7, it can be seen that the recognition accuracy of proposed
DBN model is dynamic with the parameter change. The accuracy in-
creases when the parameter ranges from 0 to 0.3, because the weight
in the DBNRM is penalized. The accuracy comes down, when the
parameter is from 0.4 to 1. It indicates that the penalization of weight
is too heavily, thus all the weights in the DBNRM closed to 0 so that the
recognition accuracy is disappointed when = 1. In one word, = 0.3
is the best parameter of proposed DBN model found out by the simu-
lation experiments.

4.3. The robust of DBNRM for imbalance data

In the real manufacturing process, the abnormal pattern data are
difficult to collect comparing with normal pattern data. Thus, the
sample size between normal and abnormal pattern is imbalance, which
will weak the performance of DBN model. Considering such problem,
the loss function is improved by adding a weighting parameter which
can remove the imbalance effect in the proposed DBN model. To check
the robust of DBNRM for the imbalance data, 9 scenarios are design as
shown in Table 4.

In this experiment, we compare the performance of DBNRM with
original DBN model. The result is shown in Fig. 8.

From Fig. 8, it can be inferred that the DBNRM outperforms than
original DBN model by using imbalance data. The accuracy of proposed
model is more stable in all the scenarios, however the accuracy of
original DBN model is poor when the training data is imbalance sig-
nificantly. Moreover, the proposed DBN model still outperforms than
alternative model when the training data is balance. It indicates the
proposed DBNRM is more robust after adding a weighting parameter
which controls the balance of training data.

5. Performance comparisons

In order to demonstrate the performance of the proposed method,
the injection molding process profiles in the motivating example will be
monitored and diagnosed in this section.

For constructing a DBN model that can recognize the molding
process profile, 2000 samples are randomly extracted from a normal
and six abnormal quality spectra respectively. 1000 of them are used as
training samples and the others as test samples. Among these training
samples based on the phase I procedure for training a DBN model, the
DBN for the normal quality spectrum and the six abnormal quality
spectra should be formed simultaneously. The parameters of the BP
algorithm should then be initialized, including the activation function
, leaning rate, setting error and the number of training steps, which are
set as shown in Table 5.

In order to determine the optimal structure of DBN model, the

Table 3
Effects of the structure on recognition accuracy.

The number
of nodes in
hidden
layer

Recognition accuracy of test data (%)

1st
hidden
layer

2nd
hidden
layer

3rd
hidden
layer

4th
hidden
layer

5th
hidden
layer

6th
hidden
layer

100 91.34 97.33 98.55 99.56 99.58 99.54
200 92.78 97.64 98.67 99.61 99.58 99.56
300 93.62 97.83 98.75 99.58 99.6 99.48
400 94.21 97.98 98.82 99.58 99.54 99.36
500 94.88 98.09 98.89 99.53 99.52 99.31
600 95.27 98.21 98.93 99.48 99.48 99.24
700 95.66 98.28 98.97 99.45 99.49 99.37
800 95.92 98.35 98.95 99.4 99.36 99.25
900 96.28 98.41 98.89 99.36 99.41 99.23
1000 96.51 98.45 98.86 99.21 99.28 99.14
1100 96.69 98.48 98.73 99.08 99.06 98.97
1200 96.81 98.51 98.65 98.98 98.92 98.62
1300 96.9 98.5 98.56 98.85 98.86 98.59
1400 96.99 98.51 98.49 98.71 98.84 98.21
1500 96.92 98.52 98.32 98.51 98.75 98.14
1600 96.89 98.37 98.17 98.32 98.61 97.79
1700 96.84 98.34 98.03 98.03 98.47 97.52
1800 96.81 98.21 97.91 98.06 98.11 97.21
1900 96.73 98.07 97.56 98.04 97.84 96.96
2000 96.71 98.02 97.49 97.82 97.41 96.53
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similar way as simulation experiment is applied. The initialization of
DBNRM with one hidden layer, and the number of nodes ranging from
100 to 2000 is considered. Then, the different structures of DBNRM
would be tested layer by layer until the best structure finding out.
Finally, the structure of DBN model is found out with 4000, 1500, and
400 hidden nodes respectively. The practicality of the DBNRM
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Fig. 7. The accuracy of DBNRM with different .

Table 4
Scenarios for imbalance data.

Scenario Sample size of normal pattern Sample size of abnormal pattern one

1 9000 1000
2 8000 2000
3 7000 3000
4 6000 4000
5 5000 5000
6 4000 6000
7 3000 7000
8 2000 8000
9 1000 9000
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Fig. 8. Accuracy of DBNRM for imbalance data.

Table 5
Parameters of the BP algorithm.

Activation function Leaning rate Setting error Training steps

Sigmoid 0.01 0.1 1000
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architecture in real application is confirmed below (see Fig. 9).
The injection molding process profiles are monitored and diagnosed

on-line using the trained DBN. Because the period of injection process is
20 s, all kinds of abnormal patterns can be seen in this period as long as
the defects happened. Thus the length of the moving window is taken as
20 s. The profile in the current monitoring window should be mapped
into their quality spectra before monitoring. An example of real-time
monitoring and diagnosis for quality spectra is shown in Fig. 10.

The change in the first two quality spectra is smooth and steady, so
the model does not trigger an alarm. Once the window moves to the
third spectrum, the F12 quality spectrum is recognized by proposed DBN
model, which indicates that the current injection molding process is
abnormal, and flash is found. When the root causes are determined
from the abnormal spectrum, we can see that the injection pressure X8
and nozzle temperature X2 are shifted upward simultaneously. Hence,
the parameters for controlling the pressure and temperature can be
directly adjusted based on the abnormal spectrum. Then the injection
molding process returns to normal. After the process has been running
for 120 s, the F23 quality spectrum is recognized by proposed DBN
model, which means that the current process is not normal and warpage
is detected. After checking the injection molding process, we find that
the temperatures of heating and cooling water both exceeded their
thresholds, which led to uneven cooling of the mold. After adjusting the
temperature of heating and cooling water, the process returns to
normal. Thus the DBN model proposed in this paper for process profiles
can be applied to real application.

To further investigate the performance of the DBN, two related
methods are considered for comparison. One is the BP neural network
with a single hidden layer integrated with wavelet decomposition (WD-
B) and the other is the support vector machine based on wavelet de-
composition (WD-S). The comparison results are shown in Table 6.

From Table 6, it can be seen that the recognition accuracy (A) of the
alternative models are significantly lower than that of the DBN method.
The average recognition accuracies of the WD-B model, the WD-S

model, and the DBN for all quality spectra are 88.57%, 89.86%, and
96.57% respectively. Thus the DBN model proposed in this paper can
recognize quality spectra more accurately than the two alternative
methods.

6. Conclusions

A novel monitoring and diagnosis method based on DBN model for
manufacturing process profiles is proposed in this paper. The proposed
method not only focuses on the monitoring of some particular manu-
facturing processes, but also can be applied to shift detection and fault
diagnosis in common manufacturing processes. The DBN algorithm can
be used to monitor and diagnose process profiles without any as-
sumption of the distribution, so it is widely applicable. The manu-
facturing process profiles contain rich quality information, but it is
difficult to visualize the normal or abnormal status of the process in
such profile data due to the monitoring variables are high-dimensional,
nonlinear and highly correlated. In this paper, process profiles are
mapped into their quality spectra which are digital images, so that deep
belief networks can be utilized to capture and visualize information
hidden in process profiles. Moreover, the proposed DBN recognition
models are developed in phase I and used to monitor and diagnose the
manufacturing process profiles on-line in phase II. In the simulation
experiments, the way to finding out optimal structure of proposed DBN
model is applied and the effect of weighting parameter is tested. The
simulation shows that the performance of proposed DBN model is better
than alternative DBN model, especially when the training data is im-
balance. Besides, the reciprocating injection molding example shows
the excellent performance of the DBN in detecting process shifts accu-
rately. The proposed recognition model outperforms the methods of
wavelet decomposition, BP neural network and support vector ma-
chine.

In our research, the proposed DBN model would be better trained by
the data with labels. It indicates that the common faults patterns should
be detected and represented in the dictionary list type before mon-
itoring and diagnosis. It would be a limitation of proposed DBN model
for real applications. Generally speaking, the patterns of different
manufacturing processes are quite different, so it is a challenging work
to define some patterns in a specific process. Moreover, the data
cleaning and data labeling also are the important part of monitoring
and diagnosing process profiles. It is the precondition of DBN model for
monitoring the process, which should be investigated in the further
research.

Fig. 9. DBNRM architecture of the injection molding process.

Monitoring window

20s0s 40s 60s 80s 100s 120s 140s

A abnormal spectrum 
occurring

A abnormal spectrum 
occurring

Fig. 10. Real-time monitoring for the injection molding process profile.

Table 6
Performance comparison of proposed method with alternative methods.

F0 F11 F12 F13 F21 F22 F22

A(%) A% A% A% A% A% A%

WD-B 90 89 89 88 89 88 87
WD-S 92 91 90 89 89 90 88
DBNRM 98 96 97 97 96 96 96
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