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Hierarchical sparse functional principal component analysis for multistage
multivariate profile data

Kai Wanga and Fugee Tsungb

aSchool of Management, Xi’an Jiaotong University, Xi’an, China; bDepartment of Industrial Engineering and Decision Analytics, Hong Kong
University of Science and Technology, Clear Water Bay, Hong Kong, Kowloon

ABSTRACT
Modern manufacturing systems typically involve multiple production stages, the real-time status
of which can be tracked continuously using sensor networks that generate a large number of pro-
files associated with all process variables at all stages. The analysis of the collective behavior of
the multistage multivariate profile data is essential for understanding the variance patterns of the
entire manufacturing process. For this purpose, two major challenges regarding the high data
dimensionality and low model interpretability have to be well addressed. This article proposes
integrating Multivariate Functional Principal Component Analysis (MFPCA) with a three-level struc-
tured sparsity idea to develop a novel Hierarchical Sparse MFPCA (HSMFPCA), in which the stage-
wise, profile-wise and element-wise sparsity are jointly investigated to clearly identify the inform-
ative stages and variables in each eigenvector. In this way, the derived principal components
would be more interpretable. The proposed HSMFPCA employs the regression-type reformulation
of the PCA and the reparameterization of the entries of eigenvectors, and enjoys an efficient opti-
mization algorithm in high-dimensional settings. The extensive simulations and a real example
study verify the superiority of the proposed HSMFPCA with respect to the estimation accuracy
and interpretation clarity of the derived eigenvectors.
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1. Introduction

Modern manufacturing systems typically involve numerous
operating stages before delivering final products. Real exam-
ples are common in many industrial sectors including semi-
conductor, consumer electronics, automobile, aerospace, and
so on (Linn et al., 2002; Shu and Tsung, 2003; Xiang and
Tsung, 2008; Shang et al., 2014). In such complicated multi-
stage processes, a product sequentially goes through a series
of stages, and at each stage, it might be subject to a variety
of process variables related to the mechanical, physical or
chemical treatment. The collective behavior of these process
variables from all stages fully characterizes the total variation
of the underlying multistage production system, the analysis
of which is crucial for quality evaluation and improvement.

Due to recent progress in information technology, online
sensing is being increasingly deployed in current industrial
practices, where the real-time process status is continuously
tracked by time-ordered data known as profiles or signals
(Paynabar et al., 2013). By appropriately configuring sensor
networks in the entire manufacturing process (Liu and Shi,
2013), we can obtain a large number of profiles associated
with all process variables at all stages. These multiple pro-
files are called multistage multivariate profile data in this art-
icle. A concrete example is given in Figure 1, which
considers a Physical Vapor Deposition (PVD) process that

produces electronic panels by coating glass material with
thin functional films. This process consists of three stages
(pre-coating, coating and post-coating), and each stage
includes several distinct-form profiles of different process
variables (e.g., voltage, current and pressure). The lower half
of Figure 1 depicts one individual sample or realization of
the multistage multivariate profiles pertinent to one product
(only two representative profiles are shown at each stage).

This article aims to study the variation of the entire man-
ufacturing process based on the multistage multivariate pro-
file data. By proposing a novel variance decomposition
methodology, we expect to potentially attribute the total
variance to a few dominant variance patterns, each of which
might only include a few informative stages and process var-
iables, to facilitate a clear interpretation. In the literature on
statistical process control, profile data analysis has been
extensively studied for both Phase I knowledge discovery
and Phase II process monitoring (Noorossana et al., 2011).
Starting from simple linear regressions for linear profiles
(Kang and Albin, 2000), profile analytic tools have evolved
to incorporate wavelet transformation (Chicken et al., 2009),
spline approximation (Chang and Yadama, 2010), nonpara-
metric regressions (Zou et al., 2008; Qiu et al., 2010) and
Functional Principal Component Analysis (FPCA) (Ramsay,
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2005; Ding et al., 2006; Colosimo and Pacella, 2007; Yu
et al., 2012) for general nonlinear profiles.

However, the methods above are all confined to a single
or univariate profile. For multivariate profiles, a major
challenge arises regarding the data dimensionality, since a
profile is theoretically infinite-dimensional as a function, or
at least high-dimensional in practice when being evaluated
discretely at a fine covariate grid as a long vector. The
curse of dimensionality is significantly exacerbated when
many profiles are considered jointly, making the within-
profile and between-profile correlation analysis extremely
hard. Therefore, most existing works adopt the
Multivariate FPCA (MFPCA) proposed in Ramsay (2005)
and several of its variants for dimension reduction. Grasso
et al. (2014) and Fang et al. (2017) used the Vectorized
PCA (VPCA) where all profiles are first vectorized and
concatenated into one single vector, and then the original
PCA is applied to derive a few leading Principal
Components (PCs). An alternative is the Multilinear PCA
(MPCA) or Uncorrelated MPCA (UMPCA) (Paynabar
et al., 2013; Grasso et al., 2014) which operates directly on
tensor representations of multivariate profiles rather than
on their vectorized versions. Assuming all profiles share
similar patterns, Paynabar et al. (2016), Wang et al. (2018)
and Zhang et al. (2018a) proposed using a multi-channel
FPCA that decomposes each profile with the same set of
orthonormal basis functions. Though achieving much lower
dimensions, a severe limitation of these MFPCA methods
is that they all output dense eigenvectors or loadings with
all entries being nonzero, i.e., the PCs are linear combina-
tions of all of the original process variables. This hinders
the PCs being interpreted with clear practical meanings,

generating no useful industrial knowledge about the vari-
ance patterns for practitioners.

To address high-dimensional settings and enhance model
interpretability simultaneously, Sparse PCA (SPCA) has
been proposed as an intuitively appealing solution where
only significant entries are kept in an eigenvector. Instead of
manually thresholding small-value entries of eigenvectors
which may yield misleading results (Cadima and Jolliffe,
1995), Zou et al. (2006), Shen and Huang (2008), and
Witten et al. (2009) performed PCA through minimizing
reconstruction errors and imposed sparsity on eigenvectors
by the L1 or LASSO penalty. The SPCA has also been devel-
oped in terms of the L0 penalty (d’Aspremont et al., 2008)
and a thresholding orthogonal iteration procedure (Ma,
2013). Allen (2013) and Chen and Lei (2015) exploited
sparsity in FPCA for a univariate profile, but for multivari-
ate profiles, there are few related works. One exception is a
recent work in Zhang et al. (2018b) which combined the
SPCA in Zou et al. (2006) and the multi-channel FPCA in
Paynabar et al. (2016), and represented each profile with a
selected set of orthonormal basis functions. In fact, they
imposed sparsity on the PC scores rather than on the eigen-
vectors. This formulation works well for their profile moni-
toring purpose, but is not applicable to our variance
decomposition problem where we expect sparsity in the
eigenvectors such that the significant stages and process var-
iables in each eigenvector can be clearly identified to
improve the interpretation of the extracted vari-
ance patterns.

In this article, the sparsity idea and the MFPCA intro-
duced above are combined together to explore the variation
of the multistage multivariate profile data. The eigenvectors

Figure 1. Multivariate profile data in the three-stage PVD process.
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corresponding to a few leading PCs that explain most of the
data variance are encouraged to be sparse with clear inter-
pretation. More creatively, for each PC that is a linear com-
bination of all process variables from all stages, we
simultaneously investigate: (i) the stage-wise sparsity, which
allows the retention of only a few informative stages; (ii) the
profile-wise sparsity, which then allows the selection of only
several informative profiles at the retained stages; and (iii)
the element-wise sparsity, which finally enables identifying
significant elements or local regions in the selected profiles
(see Figure 2 for instance). For the multistage multivariate
profile data in our context, this three-level hierarchical
sparsity will greatly facilitate interpreting the eigenvectors in
an insightful manner. Note that our sparsity configuration is
related to the group sparse settings commonly seen in vari-
able selection problems (Yuan and Lin, 2006; Zhou and
Zhu, 2010; Simon et al., 2013; Khan et al., 2015; Paynabar
et al., 2015), where variables are grouped and a two-level
sparsity is typically sudied, allowing for a few active groups
and a few active variables in each selected group. By consid-
ering an additional level of sparsity in the hierarchy, our
methodology is expected to produce more parsimonious and
accurate results for the multistage multivariate profile data
(see Section 3 for evidence).

To sum up, our contributions are as follows:

1. A pioneering Hierarchical Sparse MFPCA (HSMFPCA)
for the multistage multivariate profile data is proposed
by regression-type reformulating and reparameterizing
the original MFPCA.

2. A highly-efficient numerical optimization algorithm
equipped with closed-form updating equations at each
iteration is developed to overcome the challenge of high
dimensionality.

3. Several useful practical guidelines are given with respect
to profile data standardization, PC number selection
and penalty parameter tuning.

4. Extensive simulations and a real industrial example
study are performed to verify the superiority of our
proposed HSMFPCA in respect of estimation accuracy
and model interpretability.

In practice, by applying our methodology, practitioners are
able to gain a better understanding of the variation patterns
of the entire manufacturing process, and the quality
improvement efforts can thus be better allocated to the key
stages and process variables.

The remainder of this article is organized as follows. The
proposed HSMFPCA and the designed algorithm are
explained in detail in Section 2. Then extensive simulations

and a real example of the PVD process are presented in
Section 3 and 4, respectively. Section 5 concludes this work.
Some technical details are given in the Appendices, and sup-
plementary material is provided online.

2. Methodology

2.1. Notations and MFPCA

Let xi, sjðtÞ (i ¼ 1, :::,N, s ¼ 1, :::, S, j ¼ 1, :::,Ms) denote the
jth profile at the sth stage in the ith sample, and there are S
stages and M ¼PS

s¼1 Ms profiles from all stages. The time
index t is just used to indicate xi, sjðtÞ being a profile, and
for ease of exposition, t 2 ½0, 1� is assumed for all profiles at
different stages, which is later shown to have little influence
on our derivation.

In addition to being defined as seeking a linear subspace
where the variance of projected data is maximized, PCA can
also be formulated as sequentially minimizing the recon-
struction errors (Bishop, 2006; Shen and Huang, 2008).
Let all M profiles in the ith sample be denoted by a function
vector xiðtÞ ¼ ðxi, 11ðtÞ, :::, xi, 1M1ðtÞ, :::, xi, S1ðtÞ, :::, xi, SMSðtÞÞT :
Suppose that the eigenfunction vector corresponding to the
first PC is vðtÞ ¼ ðv11ðtÞ, :::, v1M1ðtÞ, :::, vS1ðtÞ, :::, vSMSðtÞÞT ,
which can be obtained as the solution to the following prob-
lem:

minvðtÞ
XN
i¼1

ð1
0
jjxiðtÞ � vðtÞcijj2dt

s:t: hvðtÞ, vðtÞi ¼ 1,

(1)

where ci ¼ hxiðtÞ, vðtÞi ¼
Ð 1
0 xiðtÞTvðtÞdt ¼

PS
s¼1

PMs
j¼1

Ð 1
0 xi, sjðtÞvsjðtÞdt is the PC score of the ith sample in the frame-

work of the MFPCA (Ramsay, 2005; Fang et al., 2017).
Hence, xiðtÞ � vðtÞci is the residual part of the function vec-
tor xiðtÞ at the time index t after being projected on vðtÞ,
and jjxiðtÞ � vðtÞcijj2 ¼

PS
s¼1

PMs
j¼1 ðxi, sjðtÞ � vsjðtÞciÞ2 is the

sum of squared residuals over different profiles at t. Finally,
after integrating over t,

Ð 1
0 j xiðtÞ � vðtÞcijj2dt
�� is the overall

residual values of the ith sample. Note that here we adopt
the standard formulation of the MFPCA in Ramsay (2005),
which is different from the multi-channel FPCA in
Paynabar et al. (2016) where every profile in a sample is
projected on the same eigenfunction and the PC score of
the sample is a vector. The multi-channel FPCA in fact
assumes different profiles exhibit similar patterns. Since this
article aims to find the collective behavior or variance pat-
tern of multiple profiles, the eigenfunction vector vðtÞ in
Model (1) which includes individual components vsjðtÞ asso-
ciated with each profile is a more appropriate candidate. In
addition, the studied profiles (see Figure 1 for example) in

Figure 2. Example of a three-level hierarchical sparsity pattern in an eigenvector.
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this article do not have similar patterns to those expected by
the multi-channel FPCA.

In practice, the profile xi, sjðtÞ is observed at a grid of dis-
crete time indexes, so it can be vectorized as xi, sj ¼
ðxi, sj1, :::, xi, sjTsÞT , whose length Ts is assumed to be the same
for all profiles in the sth stage, but might be different when
s varies. Then the ith sample data is denoted by a long vec-
tor xi ¼ ðxTi, 11, :::, xTi, 1M1

, :::, xTi, S1, :::, x
T
i, SMS

ÞT whose dimension
is P ¼PS

s¼1

PMs
j¼1 Ts: By replacing the integration in Model

(1) with summation, the MFPCA is simplified to the VPCA
in Grasso et al. (2014) and Fang et al. (2017), where the
eigenvector is the solution to the problem:

minv
XN
i¼1

jjxi � vvTxijj2

s:t: vTv ¼ 1,

(2)

and the eigenvector v can be divided into parts correspond-
ing to different profiles at different stages. The eigenvectors
of the remaining PCs can be similarly obtained by solving
the problem (2) except that the sample xi is repeatedly
updated by the residual xi � vvTxi: Hence, the following
subsections only focus on the development of the first sparse
eigenvector for simplicity.

2.2. SPCA

The obvious deficiencies of the VPCA for multivariate pro-
files are that the dimension P is comparable to or even
larger than the data size N and the eigenvector v with all
nonzero entries is hard to interpret. A seminal work that
addresses these two problems by proposing an SPCA is Zou
et al. (2006). They first proved a regression-type reformula-
tion of the PCA, and then obtained the sparse eigenvectors
by imposing the L1 penalty on the regression coefficients. In
the following, we adopt their method to derive a regression-
type version of the VPCA in Model (2).

Specifically, let X ¼ ðx1, :::, xNÞT be our data matrix, and
then Model (2) is equivalent to a ridge regression-type opti-
mization problem, that is

mina, bjjX� XbaT jj2F þ kjjbjj2
s:t: aTa ¼ 1,

(3)

where two decision variables a, b are involved, jj � jjF is the
Frobenius norm, and k � 0 is the tuning parameter. The first
term jjX� XbaT jj2F ¼PN

i¼1 jjxi � abTxijj2 concerns the sum
of squared residuals or reconstruction errors. For the second
term kjjbjj2, as emphasized in Zou et al. (2006), it is not needed
if P<N and X is a full-rank matrix. However, when P>N,
which is the case in this article, Model (3) with k¼ 0 would give
no unique solution as the common regression problems in high-
dimensional settings. To make the regression-type reformulation
of the PCA in problem (3) determinable, k > 0 is required.
Therefore, the L2 penalty here is not used to penalize the regres-
sion coefficients, but rather to enforce a unique reconstruction
of the PCA, which is shown in the following theorem.

Theorem 1. Let â, b̂ be the solution of Model (3). Then the
following statements hold:

(a) b̂ ¼ d21=ðd21 þ kÞv, i.e., b̂ / v, where d1 is the first
singular value of X:

(b) As k ! 1, Model (3) is reduced to the problem as
below:

mina, b jjXTXa� bjj2 � jjXTXajj2
s:t: aTa ¼ 1:

(4)

The proof is given in Appendix A. After solving problem
(3) and normalizing b̂, we can obtain the eigenvector of the
original PCA in Model (2) as Theorem 1(a) states. Note that
k only affects the norm of b̂, so in principle we can use an
arbitrary positive k. Letting k ! 1, we get another special
version of Model (3). In Model (4), when a is fixed, b̂ ¼
XTXa, which paves an extremely convenient way for impos-
ing sparsity on b, especially when P � N: Therefore, as dis-
cussed in Zou et al. (2006), Model (4) is customized for
addressing the high-dimensional challenge, and is thus
employed in this article.

Finally, the SPCA is developed by adding a penalty func-
tion for b in Model (4), that is

mina, b jjXTXa� bjj2 � jjXTXajj2 þ hðbÞ
s:t: aTa ¼ 1:

(5)

In Zou et al. (2006), Shen and Huang (2008), and Witten
et al. (2009), hðbÞ ¼PP

j¼1 jbjj which is the LASSO penalty
in Tibshirani (1996) and would induce an element-wise
sparsity pattern. In the next subsection, we propose our
hierarchical sparse MFPCA by integrating Model (5) and
the three-level hierarchical structure in the multistage multi-
variate profile data.

2.3. HSMFPCA

To exploit the three-level (i.e., stage-wise, profile-wise and
element-wise) hierarchical sparsity as introduced in Section
1, similar to Zhou and Zhu (2010) and Paynabar et al.
(2015), we perform a natural reparameterization where each
entry of the P-dimensional vector b is rewritten as

bsjt ¼ csgsjhsjt , s ¼ 1, :::, S, j ¼ 1, :::,Ms, t ¼ 1, :::,Ts:

Here we constrain cs � 0 and gsj � 0 for identification rea-
sons, otherwise changing the signs of cs and gsj together
would also lead to the same value of bsjt when hsjt is fixed.

Note that the decomposition above inherently reflects our
hierarchical data structure. At the first or stage level of hier-
archy, cs controls all entries bsjt (j ¼ 1, :::,Ms, t ¼ 1, :::,Ts)
belonging to the sth stage as a group, and cs ¼ 0 can induce
the stage-wise sparsity. At the second or profile level of hier-
archy, gsj controls all entries bsjt (t ¼ 1, :::,Ts) related to the
jth profile at the sth stage as a group, and gsj ¼ 0 can fur-
ther induce the profile-wise sparsity when the sth stage is
active with cs > 0: Finally, at the third or element level of
hierarchy, hsjt allows for different values of bsjt in the same
profile, and hsjt ¼ 0 can induce the element-wise sparsity
when the sth stage and the jth profile are active with cs > 0
and gsj > 0:
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Then the penalty function is designed as

hðbÞ ¼ k1
XS
s¼1

cs þ k2
XS
s¼1

XMs

j¼1

gsj þ k3
XS
s¼1

XMs

j¼1

XTs

t¼1

jhsjtj,

where k1, k2 and k3 are positive tuning parameters that con-
trol the degree of sparsity at different levels of hierarchy in
b, and their determination is discussed later in Section 2.5.
Plugging this form of hðbÞ into Model (5), finally we derive
our HSMFPCA as below:

mina, fcs , gsj , hsjtgs, j, t jjy � bjj2 � jjyjj2 þ k1
XS
s¼1

cs

þ k2
XS
s¼1

XMs

j¼1

gsj þ k3
XS
s¼1

XMs

j¼1

XTs

t¼1

jhsjtj

s:t: y ¼ XTXa,

aTa ¼ 1,

bsjt ¼ csgsjhsjt, s ¼ 1, :::, S, j ¼ 1, :::,Ms, t ¼ 1, :::,Ts,

cs � 0, gsj � 0,

(6)

and the estimated sparse eigenvector is v̂ ¼ b̂=jjb̂jj:
Remark 1. Our HSMFPCA is based on Model (4) to adapt
to the high-dimensional data structure, and then it achieves
the three-level hierarchical sparsity by reparameterizing vari-
ables and imposing penalties. One appealing computational
property of Model (6) is that the closed-form updating
equations for iteratively estimating the sparse b can be easily
obtained (see Proposition 1 in Section 2.4) as there is no
multiplying matrix in front of b in jjy � bjj2: Therefore, our
HSMFPCA enjoys both high model interpretability and high
computational efficiency.

Remark 2. Our HSMFPCA can be degenerated to two other
methods with fewer levels of sparsity. If k1 ¼ 0 and cs ¼ 1,
the Profile Sparse MFPCA (PSMFPCA) that encourages a
two-level (profile-wise and element-wise) hierarchical spars-
ity can be obtained. Similarly, if k1 ¼ k2 ¼ 0 and cs ¼ gsj ¼
1, the one-level Element-wise Sparse MFPCA (ESMFPCA)
is derived which is also equivalent to the original SPCA in
Zou et al. (2006), Shen and Huang (2008), and Witten et al.
(2009). These two alternatives are compared with our
method in Section 3.

2.4. Algorithm

For the problem (6), the analytical solutions of a and b are
intractable, but when either a or b is fixed, the complexity
is greatly reduced. Therefore, we adopt the Block
Coordinate Descent (BCD) algorithm to solve this problem.
Specifically, we first fix a to estimate b, and then fix b to
estimate a: The closed-form updating equations are given in
Propositions 1 and 2 below. These two steps are iterated
until a certain convergence condition is met.

Proposition 1. In Model (6), when a is fixed, y ¼ XTXa is
known, and the following hold:

(a) Given cs and gsj:

ĥsjt ¼ Iðcsgsj > 0Þ � signðysjtÞ �
jysjtj
csgsj

� k3
2ðcsgsjÞ2

 !
þ
:

(7)

(b) Given cs and hsjt:

ĝsj ¼ Iðcs > 0Þ � Ið9t, hsjt 6¼ 0Þ

�
XTs

t¼1

ðcshsjtÞ2PTs

t¼1
ðcshsjtÞ2

ysjt
cshsjt

� k2
2
PTs

t¼1
ðcshsjtÞ2

0
@

1
A

þ

:

(8)

(c) Given gsj and hsjt:

ĉs ¼ Ið9ðj, tÞ, gsjhsjt 6¼ 0Þ

�
�XMs

j¼1

XTs

t¼1

ðgsjhsjtÞ2PMs

j¼1

PTs

t¼1
ðgsjhsjtÞ2

ysjt
gsjhsjt

� k1
2
PMs

j¼1

PTs

t¼1
ðgsjhsjtÞ2

�
þ

(9)

Proposition 2. In Model (6), when b is
fixed, â ¼ XTXb=jjXTXbjj:

The proofs of Propositions 1 and 2 are given in Appendix B. In
Proposition 1, when a is fixed, the update of b can be done by an
inner BCD procedure for fcsgs, fgsjgs, j, and fhsjtgs, j, t with the
closed-form updating equations in Equation (7)-(9) for each kind
of parameter. In addition, at the stage level, each cs value can be
updated in a parallel manner as Equation (9) implies, and the
same goes for updating gsj values and hsjt values at the profile and
element levels. This block parallel updating property makes the
estimation of the sparse b scale to high dimensions easily.When b
is fixed, Proposition 2 derives an extremely easy updating equa-
tion for a: To sum up, our HSMFPCA can be efficiently applied to
the multistage multivariate profiles that have an inherent high-
dimensional data structure.

More insights about our three-level hierarchical sparsity can be
gained from Proposition 1. First, at the element level, ĥsjt should
be zero if cs ¼ 0 or gsj ¼ 0; otherwise, its initial estimate
ysjt=ðcsgsjÞ is diminished by a soft thresholding. Note that the
shrinkage magnitude in Equation (7) is inversely proportional to
c2s and g2sj, which is intuitive, as more active stages or profiles
would induce fewer penalties on their elements. Second, at the
profile level in Equation (8), ĝsj ¼ 0 if cs ¼ 0 and hsjt ¼ 0 for all
t ¼ 1, :::,Ts: When some elements in this profile are active, we
would have several estimates of gsj as ysjt=ðcshsjtÞ, the weighted
shrunken average of which is taken as the final estimate of gsj. The
weight allocated to each element is proportional to the magnitude
of this element h2sjt: Finally, at the stage level, ĉs in Equation (9) is
also a weighted shrunken average of all ysjt=ðgsjhsjtÞ associated
with the active elements belonging to this stage.

The BCD algorithm for the HSMFPCA is detailed in
Algorithm 1. In Zou et al. (2006), a is initialized as the first
eigenvector of XTX by using Singular-Value Decomposition
(SVD), whose time complexity is as high as OðP3Þ:
Alternatively, we calculate XXT ðOðN2PÞÞ and use the power
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method ðOðN2ÞÞ to only obtain the first eigenvector of XXT

denoted by e: Then the first eigenvector of XTX is XTe=jjXTejj
ðOðNPÞÞ (Bishop, 2006). The matrix XTX is also calculated
ðOðNP2ÞÞ and stored in advance, as it will be used repeatedly in
updating a and b in Steps 2 and 3. Step 2 updates b, the time
complexity being O(LP) where L is the number of repeat times
in updating fcs, gsj, hsjtgs, j, t: Step 3 updates a whose time com-
plexity involved in calculating XTXb is OðP2Þ: The overall time
complexity of Algorithm 1 is thus OðN2P þ N2 þ NP þ NP2 þ
MLP þMP2Þ whereM is the iteration times of Steps 2 and 3. In
our context, N � P, and small values of M and L (e.g., 10 or
50) can already lead to an empirical convergence. Therefore, our
algorithm whose time complexity is at the order of OðP2Þ does
not induce prohibitively high computational costs.

Finally, we discuss the convergence property of
Algorithm 1 in Proposition 3.

Proposition 3. Algorithm 1 converges to a stationary point
of Model (6).

Proof. Denote the objective function in Model (6) before the

mth iteration in Algorithm 1 by fm�1 ¼
f ðaðm�1Þ, fĉðm�1Þ

s , ĝðm�1Þ
sj , ĥ

ðm�1Þ
sjt gs, j, tÞ: After the inner BCD

procedure in Step 2, f ðaðm�1Þ, fĉðmÞ
s , ĝðmÞ

sj , ĥ
ðmÞ
sjt gs, j, tÞ � fm�1:

Then after Step 3, fm ¼ f ðaðmÞ, fĉðmÞ
s , ĝðmÞ

sj , ĥ
ðmÞ
sjt gs, j, tÞ �

f ðaðm�1Þ, fĉðmÞ
s , ĝðmÞ

sj , ĥ
ðmÞ
sjt gs, j, tÞ: Thus, fm � fm�1 and the iter-

ation of Steps 2 and 3 decreases the objective function mono-
tonically. Note that jjyjj2 ¼ aTXTXXTXa with aTa ¼ 1 in
Model (6) is upper bounded by the first eigenvalue g1 of
XTXXTX, and thus our objective function f is evidently lower
bounded by �g1: In addition, as shown in Propositions 1 and
2, f has a unique minimum in a, fcsgs, fgsjgs, j, and fhsjtgs, j, t
when any three kinds of these parameters are fixed. Therefore,
according to Theorem 4.1 of Tseng (2001), the algorithm is
guaranteed to converge to a stationary point of Model (6).

Algorithm 1 HSMFPCA
Input: Data matrix X, tuning parameters k1, k2 and k3
Output: Sparse eigenvector v̂ ¼ b̂=jjb̂jj:
1: Initialization. Use the power method to obtain the first

eigenvector e of XXT , and let âð0Þ ¼ XTe=jjXTejj:
Then yð0Þ ¼ XTXað0Þ, ĉð0Þs ¼ 1, ĝð0Þsj ¼ 1, ĥ

ð0Þ
sjt ¼ yð0Þsjt and

b̂
ð0Þ
sjt ¼ ĉð0Þs ĝð0Þsj ĥ

ð0Þ
sjt , s ¼ 1, :::, S, j ¼ 1, :::, Ms, t ¼

1, :::, Ts:
2: Update b̂: Given âðm�1Þ, yðm�1Þ ¼ XTXaðm�1Þ is known,

and then an inner BCD algorithm is used to obtain

fĉðmÞ
s , ĝðmÞ

sj , ĥ
ðmÞ
sjt gs, j, t and b̂

ðmÞ
:

2.1: Initially, ĉs ¼ ĉðm�1Þ
s , ĝsj ¼ ĝðm�1Þ

sj and ĥsjt ¼ ĥ
ðm�1Þ
sjt :

2.2: Update ĥsjt, ĝsj and ĉs sequentially by Proposition 1.
2.3: Repeat Step 2.2 until convergence, and finally ĉðmÞ

s ¼
ĉs, ĝ

ðmÞ
sj ¼ ĝsj and ĥ

ðmÞ
sjt ¼ ĥsjt and b̂

ðmÞ
sjt ¼ ĉsĝsjĥsjt:

3: Update â: Given b̂
ðmÞ

, update â by Proposition 2.
4: Repeat Steps 2 and 3 by letting m ¼ mþ 1 until â and

b̂ converge.

2.5. Implementation guidelines

This subsection provides several key guidelines for the
implementation of our proposed HSMFPCA.

Data centering and standardization
For exposition convenience, all profile data above are
assumed to have been centered and standardized. Data cen-
tering is trivial by letting xi, sj ¼ xi, sj � lsj where lsj ¼PN

i¼1 xi, sj=N: However, to standardize profile data, much
more care has to be taken, as the data points have different
measurement units and scales in different profiles but share
the same unit and scale in the same profile. Hence, a pro-
file-wise standardization is preferred, i.e., xi, sj ¼ ðxi, sj �
lsjÞ=rsj, where rsj ¼

PN
i¼1 ðxi, sj � lsjÞTðxi, sj � lsjÞ=ðNTsÞ,

such that all data points in xi, sj are scaled at the same order
of magnitude.

Determining the number of PCs
The common subjective approach to choosing the number
of PCs K is to seek an elbow point on the scree plot or to
threshold the cumulative percentage of the explained vari-
ance. However, as shown in Akemann et al. (2011), when
P>N, these qualitative approaches are ineffective in separat-
ing signals from noise. A quantitative way is based on the
Tracy–Widom convergence, which derives the asymptotic
distribution of the largest eigenvalue when P=N ! q 2
ð0,1Þ if the xi are normal distributed with an identity
covariance matrix (El Karoui, 2003). Therefore, as our
HSMFPCA is performed sequentially, after updating X by
X� Xv̂v̂T , we first test a hypothesis to check if the covari-
ance matrix is an identity matrix based on the
Tracy–Widom convergence with an appropriate significant
level (e.g., 0.05). If rejected, we continue solving the problem
(6), otherwise we stop looking for the next PC. See the sup-
plement materials file for more information.

Selecting the tuning parameters
The tuning parameters can be determined by Cross
Validation (CV) approaches, e.g., the 5-fold or 10-fold CV,
at very high computational expense. Therefore, we use a
common model selection criteria such as the Akaike
Information Criterion (AIC) in this work. Furthermore,
instead of seeking the optimal parameters in a three-dimen-
sion grid of k1, k2, and k3, similar to the non-negative gar-
rote technique in Yuan and Lin (2006), we let
k2
PS

s¼1

PMs
j¼1 gsj ¼ k3

PS
s¼1

PMs
j¼1 Tsgsj and k1

PS
s¼1 cs ¼

k3
PS

s¼1 MsTscs in Model (6), i.e., the penalties imposed on
the profiles and stages are proportional to the number of
elements belonging to them. Now we only have to deter-
mine the optimal value of k3. The AIC of our proposed
HSMFPCA is defined as

AICðk3Þ ¼ jjX� Xvk3v
T
k3 jj2F=r2e þ 2 � dfk3 ,

where r2e ¼ MedianðfPN
i¼1 ðxi, sjt � lsjtÞ2=Ngs, j, tÞ (Ma, 2013),

and df counts the number of nonzero elements in b:
Generally speaking, as k3 increases, the residual jjX�
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Xvk3v
T
k3
jj2F=r2e increases, whereas the model complexity dfk3

decreases, and thus the optimal value of k3 can be found.
This simplified AICðk3Þ has been compared with the exact
AICðk1, k2, k3Þ in our supplementary materials to verify its
sufficient model selection capability.

Finally, to conclude Section 2, the implementation proce-
dures of our proposed HSMFPCA for the multistage multi-
variate profile data are summarized in Figure 3. The derived
sparse eigenvectors enable us to identify the active stages,
profiles and elements in the variance patterns of the entire
manufacturing process.

3. Simulations

In this section, we investigate the numerical performance of
the proposed HSMFPCA through extensive simulations.
Specifically, we first show the solution path of the
HSMFPCA. Then, we compare the HSMFPCA with several
competing methods in the estimation of the eigenvector cor-
responding to the first PC. Finally, the comparison is
extended to the case of multiple PCs, where multiple leading
eigenvectors are estimated.

3.1. Solution path of the HSMFPCA

This subsection presents the behavior of our estimated
eigenvector v̂ from Model (6) as the tuning parameter k3
varies from zero to a large positive number, i.e., the entire
solution path of the proposed HSMFPCA. Our multistage
multivariate profile data are generated by the following fac-
tor model (Johnstone and Lu, 2009; Ma, 2013):

xi ¼ lþ
XL
l¼1

uilvl þ ei, i ¼ 1, :::,N, (10)

where l ¼ 0 is the mean vector, vl is the lth true eigen-
vector, uil 	i:i:dNð0, r2l Þ is the realization of the lth random fac-
tor in the ith sample, r2l represents the lth signal size, and
ei 	i:i:dNð0,r2e IÞ is the white noise independent of the uil.

We first consider the single factor model with L¼ 1 in
Equation (10). The true eigenvector is shown in Figure 4
where the elements belonging to different profiles and stages
are divided by dashed lines. There are S¼ 4 stages, Ms ¼ 5
profiles at each stage, and Ts ¼ 10 elements in each profile,
so the dimension of xi is P¼ 200. We simulate N¼ 50

samples with r21 ¼ 102 and r2e ¼ 12, and then apply our
HSMFPCA to this data set. Four representative estimated
eigenvectors corresponding to different k3 values are also
plotted in Figure 4. When k3 ¼ 0, our HSMFPCA is
reduced to the conventional VPCA, and all of the elements
in v̂ are nonzero, making the interpretation unclear. As k3
increases, e.g., k3 ¼ 3:5, 6:8, 10:0, the insignificant elements,
profiles and stages are shown to progressively shrink to
zero. The best k3 with the smallest AIC is selected as being
6.8 in Figure 5, and the resulted v̂ is very similar to the true
eigenvector with correctly selected stages and profiles.
Additionally, the AIC is only increased slightly when 6:8 <

k3 < 12 in Figure 5, indicating that in practice k3 can be
selected robustly in a wide range.

3.2. Estimation performance for a single PC

In this subsection, we quantify the HSMFPCA performance
in eigenvector estimation. We still use the single factor
model in Section 3.1 with L¼ 1, but in addition to the true
eigenvector in Figure 4, we consider another five cases in
Figure 6. We let N¼ 50, r21 ¼ 52, r2e ¼ 12 and generate 100
random date sets. Table 1 summarizes the competing meth-
ods and the performance criteria. In particular, after concat-
enating all profile xi, sj values in the ith sample into a long
vector xi, the VPCA applies the original PCA to the data
matrix X ¼ ðx1, :::, xNÞT (Grasso et al., 2014; Fang et al.,
2017). The MPCA and UMPCA, however, formulate the
samples of all profiles as a three-dimensional array or tensor
and use the multilinear algebra to derive engenvectors.
Unlike the MPCA, the UMPCA considers an additional
zero-correlation constraint on PCs. We refer readers to
Paynabar et al. (2013) and Grasso et al. (2014) for more
technical details. The SSPCA simply employs a sequential
manner to induce the three-level hierarchical sparsity in
eigenvectors, i.e., the original PCA is first used to obtain an
eigenvector v̂, then the group LASSO (Yuan and Lin, 2006;
Friedman et al., 2010) is adopted to select significant stages
and profiles in v̂, and finally the LASSO (Tibshirani, 1996)
is taken to screen import elements in the selected stages and
profiles. The ESMFPCA and PSMFPCA are two simplified
versions of our HSMFPCA as discussed in Remark 2 in
Section 2.3 and hence can be implemented by using our
Algorithm 1.

Figure 3. Flowchart of the implementation of our proposed HSMFPCA.
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The comparison results are given in Table 2 and illus-
trated in Figure 7. For each criterion, we also perform the
paired Student’s t-test to check the difference between the
results of the best method and the counterparts in the 100
simulated data sets, and the best and comparable results are
all shown in bold face in Table 2. It can be clearly seen that
when the true eigenvector has the three-level hierarchical
sparsity with insignificant elements, profiles and stages
(cases 1 to 4), our HSMFPCA has significant superiority
with higher correct rates (i.e., ZM, F1) in identifying the
sparsity pattern of an eigenvector as well as smaller devi-
ation errors (i.e., Angle, RMSE) in inferring the element val-
ues of an eigenvector. In addition, our HSMFPCA behaves
very similarly to the PSMFPCA and ESMFPCA in cases 5
and 6, which only have two or one level(s) of sparsity.
Compared with the VPCA which always has the largest EVs,
but dense engenvectors, our HSMFPCA is found to slightly

sacrifice the percent of explained variance for much more
interpretable sparse results. There is little difference between
the results of the MPCA and UMPCA, and neither of them
perform well in our cases, as they both concern a no spars-
ity structure in the eigenvectors. The SSPCA seems better
than the ESMFPCA since it further exploits the profile-wise
and stage-wise sparsity, but it is still worse than our pro-
posed HSMFPCA. Note that our HSMFPCA involves a
minimization of the penalized reconstruction errors of PCA
through iterations, whereas the SSPCA is actually a simple
one-time soft-thresholding on the dense eigenvectors
obtained from the original PCA. Overall, our HSMFPCA
has been shown to have a better performance in estimating
sparse eigenvectors, and is extremely suitable for application
to multistage multivariate profile data when a three-level
hierarchical sparsity exists in the variance patterns.

3.3. Estimation performance for multiple PCs

Next we explore the performance of our proposed
HSMFPCA in estimating multiple eigenvectors by following
the procedures in Figure 3. The data are simulated by the
factor model in Equation (10) with L¼ 3. We set N¼ 50,
r2e ¼ 12 and generate 50 random date sets. The true eigenve-
tors with their signal sizes are shown in Figures 8 and 9. In
case 7, v1, v2, and v3 are all sparse, and their nonzero ele-
ments are distributed in different profiles and stages. In case
8, however, the nonzero regions in v1, v2, and v3 are

Figure 4. True eigenvector and the solution path of the HSMFPCA.

Figure 5. Selection of the tuning parameter k3 by the AIC.

IISE TRANSACTIONS 65



overlapping, which indicates that a profile or stage can be
significant in more than one eigenvector.

Our HSMFPCA is also compared with its six counter-
parts in Table 1. The results regarding the estimated three
leading eigenvectors v̂1, v̂2, v̂3 and the overall subspace
spanned by the three estimated eigenvectors are shown in
Tables 3 and 4 and Figure 10. Note that here the overall
angle refers to the subspace angle, and the EVs of v̂1, v̂2, v̂3
are adjusted slightly, due to the existing small correlations
among the estimated sparse PCs (see Zou et al. (2006)). It
can be seen that except in a few cells in Tables 3 and 4, our
HSMFPCA is always the best one, which verifies its advan-
tages in estimating the sparsity patterns and the element val-
ues of both the individual eigenvectors and the spanned
subspace in cases 7 and 8. To sum up, it has been validated

that our proposed HSMFPCA is also able to accurately dis-
cover multiple informative variance patterns with sparse
structures from the multistage multivariate profile data.

As a final note, we also investigate the behavior of the pro-
posed HSMFPCA for varying the sample size N and signal size
r2l : The simulation results are provided in our supplementary
materials file. Within our expectation, asN and r2l increase, the
sparsity patterns and the element values of the eigenvectors are
more accurately inferred, and the variances of the performance
criteria are also reduced whenN gets larger.

4. Real example

In this section, we revisit the three-stage PVD process for
producing electronic panels introduced in Section 1, and

Figure 6. True eigenvectors in cases 2-6.

Table 1. Notations and definitions of the competing methods and performance criteria.

Method V: Vectorized PCA (VPCA in Grasso et al. (2014), Fang et al. (2017)).
M: Multilinear PCA (MPCA in Grasso et al. (2014)).
UM: Uncorrelated multilinear PCA (UMPCA in Paynabar et al. (2013)).
SS: Sequential sparse PCA (SSPCA).
ES: Element-wise sparse MFPCA (SPCA in Zou et al. (2006)).
PS: Profile-wise and element-wise sparse MFPCA (PSMFPCA).
HS: our proposed HSMFPCA.

Criterion ZM: Zero-measure, ZM ¼Ps, j, tðIðv̂ sjt 6¼ 0&vsjt 6¼ 0Þ þ Iðv̂ sjt ¼ 0&vsjt ¼ 0ÞÞ=P:
F1: F1 score, the harmonic mean of precision and recall, F1 ¼ 2ðprecision�1 þ recall�1Þ�1, and
precision ¼Ps, j, tðIðv̂ sjt 6¼ 0&vsjt 6¼ 0ÞÞ=Ps, j, t Iðv̂ sjt 6¼ 0Þ,
recall ¼Ps, j, tðIðv̂ sjt 6¼ 0&vsjt 6¼ 0Þ=Ps, j, t Iðvsjt 6¼ 0Þ:
Angle: The angle between the estimated and true eigenvectors, Angle ¼ 2ðarccosðjv̂TvjÞ=pÞ:
RMSE: The root mean squared error of the estimated eigenvector, RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjv̂ � vjj2=P

q
:

EV: The ratio of the explained variance over the total variance, EV ¼ varðxT v̂Þ=Ps, j, t varðxsjtÞ:
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apply our proposed HSMFPCA to explore the variance pat-
terns based on the profile data of process variables from all
stages. In this real example, each stage involves a high-tem-
perature and high-pressure environment, where the source
material is stimulated and ejected as high-energy sputtered
atoms (see Figure 1). These sputtered atoms fly to and are
condensed at the surface of the raw glass material, thereby
gradually forming a thin functional film. The three stages in
Figure 1 share a similar process mechanism, but take differ-
ent source materials to generate thin functional films with
different desired properties.

Our real example data set consists of N¼ 120 samples. In
each stage, five key process variables, i.e., voltage, current,
pressure, air flow, and temperature, are continuously
recorded every second, generating in total M ¼ 5
 3 ¼ 15
profiles. The durations of the three stage are programed to
be 13, 49, and 13 seconds, and thus the data dimension of xi
is P ¼ 13
 5þ 49
 5þ 13
 5 ¼ 375: The original mul-
tiple profiles of the process variables from the three stages
(see Figure S.4 in our supplementary materials file) are cen-
tered and standardized following the guidelines in Section
2.5, and are shown in Figure 11, where the elements of dif-
ferent profiles and stages are separated by dashed lines. At
first glance, we observe that the variances of some elements
in the pressure, air flow profiles in Stage 1 and in the volt-
age, current profiles in Stage 2 are much larger than those
of the other elements in the other profiles and stages, indi-
cating that there might be element-wise, profile-wise and
stage-wise sparsity structures in the variance patterns of
these multistage multivariate profiles data.

Our proposed HSMFPCA, which encourages a three-level
hierarchical sparsity in the derived eigenvectors, is applied
to this real data set. The number of significant PCs is deter-
mined as K¼ 2 by performing the hypothesis test discussed
in Section 2.5. The tuning parameters are selected by the
AIC. The estimated eigenvectors v̂1 and v̂2 are plotted in
Figure 11. The first PC explains around 30% of the total
data variance, and v̂1 is very sparse with only 20 nonzero
elements in the pressure and air flow profiles in Stage 1.
From the manufacturing point of view, the positive correl-
ation between the pressure and air flow profiles in v̂1 is due

to the pressure in the chamber being controlled by the air
flow, and thus more air flow will produce higher pressure.
The large variations at the initial and ending phases of the
pressure and air flow profiles in Stage 1 might be caused by
process instability during the warm-up and cool-down peri-
ods. The second PC explains about 10% of the data variance,
and v̂2 reveals that the voltage and current in Stage 2 are
negatively correlated and have almost-cyclical large varia-
tions every 10 seconds during the production process in
Stage 2, which is probably due to the fact that the PVD pro-
cess control program will jointly adjust the voltage and cur-
rent on occasion to maintain the product of them (i.e., the
power) at a desired level. The third stage seems much more
stable without significant variance patterns. The competing
methods in Table 1 are also applied to this real example in
our supplementary materials file. Our HSMFPCA is shown
to be much better, generating much more sparse and inter-
pretable results. In practice, these clear discoveries from our
HSMFPCA can lead the practitioners to allocate more efforts
to stabilize the gas-related process variables in Stage 1 and
the electricity-related process variables in Stage 2.

5. Conclusion

Large-scale senor networks deployed in multistage produc-
tion systems enable online sensing of all process variables at
all stages. Based on the generated multistage multivariate
profile data that have continuously tracked the real-time
process status, this article proposes a novel PCA-based vari-
ance decomposition methodology to study the variation of
the entire manufacturing process. Specifically, we integrate
the conventional MFPCA with a three-level hierarchical
sparsity idea to simultaneously investigate the stage-wise,
profile-wise and element-wise sparsity, so that the inform-
ative key stages and process variables in each eigenvector
can be clearly identified. Our HSMFPCA is developed by
regression-type reformulating the PCA and reparameterizing
the entries of eigenvectors, and is well equipped with an effi-
cient optimization algorithm. Useful guidelines have been
provided for practical implementations. The extensive simu-
lations and a real example study of the PVD process have

Table 2. Comparison results in cases 1 to 6.

V M UM SS ES PS HS V M UM SS ES PS HS

Case 1 Case 2
ZM 0.1050 0.1050 0.1050 0.8930 0.8778 0.9222 0.9309 0.1700 0.1700 0.1700 0.9088 0.9068 0.9376 0.9467
F1 0.1900 0.1900 0.1900 0.6520 0.6089 0.7247 0.7490 0.2906 0.2906 0.2906 0.7913 0.7869 0.8466 0.8659
Angle 0.2472 0.1595 0.1606 0.1275 0.1255 0.1222 0.1180 0.2462 0.1967 0.1974 0.1515 0.1580 0.1383 0.1348
RMSE 0.0272 0.0176 0.0177 0.0141 0.0139 0.0135 0.0130 0.0272 0.0218 0.0218 0.0167 0.0175 0.0153 0.0148
EV 0.1336 0.1132 0.1132 0.1215 0.1208 0.1203 0.1198 0.1333 0.1100 0.1100 0.1226 0.1221 0.1208 0.1206

Case 3 Case 4
ZM 0.2750 0.2750 0.2750 0.8917 0.8662 0.9153 0.9190 0.4100 0.4100 0.4100 0.8614 0.8239 0.8659 0.8706
F1 0.4314 0.4314 0.4314 0.8287 0.7932 0.8645 0.8686 0.5816 0.5816 0.5816 0.8385 0.8005 0.8512 0.8526
Angle 0.2459 0.2476 0.2482 0.1841 0.1959 0.1659 0.1631 0.2454 0.3062 0.3067 0.2184 0.2281 0.1968 0.1926
RMSE 0.0270 0.0273 0.0274 0.0204 0.0217 0.0183 0.0181 0.0268 0.0334 0.0335 0.0241 0.0252 0.0216 0.0211
EV 0.1336 0.1044 0.1045 0.1240 0.1238 0.1232 0.1232 0.1335 0.0967 0.0968 0.1249 0.1250 0.1259 0.1258

Case 5 Case 6
ZM 0.4700 0.4700 0.4700 0.8143 0.8126 0.8150 0.8143 0.5750 0.5750 0.5750 0.7990 0.8021 0.7963 0.7965
F1 0.6395 0.6395 0.6395 0.8259 0.8115 0.8252 0.8251 0.7302 0.7302 0.7302 0.8290 0.8309 0.8300 0.8303
Angle 0.2462 0.3368 0.3372 0.2349 0.2426 0.2129 0.2130 0.2663 0.3669 0.3673 0.2586 0.2438 0.2437 0.2443
RMSE 0.0268 0.0367 0.0368 0.0259 0.0267 0.0233 0.0234 0.0286 0.0400 0.0400 0.0285 0.0265 0.0267 0.0270
EV 0.1333 0.0922 0.0923 0.1259 0.1256 0.1273 0.1276 0.1333 0.0875 0.0876 0.1270 0.1269 0.1303 0.1313
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Figure 7. Boxplots of performance comparison. Rows 1 to 6 correspond to cases 1 to 6.
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Figure 8. True eigenvectors in case 7: r21 ¼ 82,r22 ¼ 52,r23 ¼ 32:

Figure 9. True eigenvectors in case 8: r21 ¼ 122,r22 ¼ 82,r23 ¼ 52:

Table 3. Comparison results in case 7.

V M UM SS ES PS HS V M UM SS ES PS HS

v1 v2
ZM 0.1400 0.1400 0.1400 0.8613 0.8756 0.8673 0.8772 0.1050 0.1050 0.1050 0.9000 0.8414 0.8592 0.8725
F1 0.2456 0.2456 0.2456 0.7127 0.7214 0.7000 0.7254 0.1900 0.1900 0.1900 0.7260 0.5806 0.6355 0.6630
Angle 0.1843 0.2653 0.2491 0.1183 0.1015 0.1156 0.1085 0.2842 0.7536 0.4118 0.1484 0.1470 0.1621 0.1458
RMSE 0.0204 0.0292 0.0275 0.0120 0.0113 0.0128 0.0111 0.0312 0.0615 0.0391 0.0153 0.0163 0.0179 0.0163
EV 0.2346 0.1930 0.1962 0.2256 0.2250 0.2253 0.2252 0.0986 0.0159 0.0592 0.0867 0.0891 0.0890 0.0888

v3 Overall
ZM 0.1500 0.1500 0.1500 0.8483 0.7853 0.8651 0.8887 0.1317 0.1317 0.1317 0.8698 0.8341 0.8638 0.8794
F1 0.2609 0.2609 0.2609 0.6728 0.5425 0.6938 0.7393 0.2327 0.2327 0.2327 0.6747 0.5976 0.6635 0.6971
Angle 0.4253 0.8691 0.8144 0.2899 0.2885 0.2610 0.2538 0.1549 0.2399 0.2225 0.0964 0.0870 0.0890 0.0794
RMSE 0.0460 0.0719 0.0715 0.0306 0.0317 0.0285 0.0277 0.0344 0.0572 0.0507 0.0214 0.0218 0.0212 0.0191
EV 0.0459 0.0060 0.0141 0.0361 0.0382 0.0369 0.0364 0.3791 0.2150 0.2795 0.3485 0.3523 0.3512 0.3503

Table 4. Comparison results in case 8.

V M UM SS ES PS HS V M UM SS ES PS HS

v1 v2
ZM 0.2900 0.2900 0.2900 0.8003 0.7639 0.7990 0.8102 0.2400 0.2400 0.2400 0.7601 0.6783 0.7268 0.7346
F1 0.4496 0.4496 0.4496 0.7461 0.7145 0.7481 0.7688 0.3871 0.3871 0.3871 0.6559 0.5957 0.6394 0.6584
Angle 0.1884 0.2968 0.2935 0.1559 0.1505 0.1643 0.1419 0.3266 0.9497 0.7645 0.2861 0.2865 0.3004 0.2685
RMSE 0.0208 0.0326 0.0322 0.0172 0.0166 0.0181 0.0164 0.0350 0.0610 0.0600 0.0312 0.0311 0.0323 0.0306
EV 0.3613 0.3144 0.3151 0.3565 0.3568 0.3568 0.3568 0.1788 0.0076 0.0272 0.1621 0.1749 0.1746 0.1746

v3 Overall
ZM 0.1500 0.1500 0.1500 0.6763 0.6523 0.6934 0.7104 0.2267 0.2267 0.2267 0.7456 0.6981 0.7397 0.7517
F1 0.2609 0.2609 0.2609 0.4578 0.3762 0.4713 0.5012 0.3696 0.3696 0.3696 0.5816 0.5790 0.6290 0.6520
Angle 0.7294 0.9919 0.9376 0.9481 0.7271 0.7044 0.6992 0.1017 0.1986 0.2104 0.0755 0.0783 0.0756 0.0560
RMSE 0.0695 0.0902 0.0813 0.0945 0.0713 0.0671 0.0643 0.0470 0.0658 0.0616 0.0590 0.0464 0.0449 0.0426
EV 0.0317 0.0037 0.0082 0.0125 0.0270 0.0268 0.0265 0.5718 0.3257 0.3504 0.5311 0.5587 0.5582 0.5579
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Figure 10. Boxplots of performance comparison. Columns 1 and 2 correspond to cases 7 and 8.
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validated the advantages of our proposed HSMFPCA in pro-
ducing more parsimonious and accurate eigenvectors, which
can be interpreted more clearly to provide practitioners with
insightful knowledge about the process variation.

This article exploits sparse eigenvectors. Another issue
related to the profile data is smoothness. Our method can
be extended to utilize the smoothness structures in eigenvec-
tors by replacing the LASSO penalty imposed on the elem-
ent values of profiles by other tailored ones, e.g., the fused
LASSO in Tibshirani et al. (2005). This will be formally
studied in a separate future work. Our proposed HSMFPCA
can also be taken as an ingredient of an online monitoring
framework in Phase II for multivariate profile data as in
Zhang et al. (2018a, 2018b), where the scores of a new sam-
ple with respect to the first few sparse eigenvectors and the
residuals are plotted in the control charts for process sur-
veillance. When the quality of the final product is available,
modeling the relationship between the multistage multivari-
ate profile data and the categorical or numerical quality
characteristics is also a very promising research direction.
The three-level hierarchical sparsity can be employed to
address the high-dimensional challenge and enhance the
model interpretability, its exact performance in this classifi-
cation or regression context deserving our future efforts.
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Appendices

Appendix A

The proof of Theorem 1 can be done by following the work in Zou
et al. (2006), which is detailed in this appendix to make this article
self-contained.

Proof of Part (a). First, let A? be any orthonormal P
 ðP� 1Þ
matrix such that ½a,A?� is P
P orthonormal. Then trðXXTÞ ¼
trðX½a,A?�½a,A?�TXTÞ ¼ trðXaaTXTÞ þ trðXA?AT

?X
TÞ: So

jjX� XbaT jj2F ¼ trððX� XbaTÞðX� XbaTÞTÞ
¼ trðXXT � XabTXT � XbaTXT þ XbbTXTÞ
¼ trðXA?AT

?X
TÞ þ trðXaaTXT � XabTXT

� XbaTXT þ XbbTXTÞ
¼ jjXA?jj2F þ jjXa� Xbjj2:

When a is fixed in Model (3), b̂ ¼ argminbjjXa� Xbjj2 þ kjjbjj2 ¼
ðXTXþ kIÞ�1XTXa: By substituting b̂ in the objective function of
Model (3), we get

jjX� Xb̂aTjj2F þ kjjb̂jj2 ¼ jjXA?jj2F þ jjXa� Xb̂jj2 þ kjjb̂jj2
¼ trðXA?AT

?X
TÞ þ trðXaaTXTÞ

� aTXTXðXTXþ kIÞ�1XTXa

¼ trðXXTÞ � aTXTXðXTXþ kIÞ�1XTXa,

and then â ¼ argmaxaaTXTXðXTXþ kIÞ�1XTXa, subject to aTa ¼ 1:
It is obvious that â should be the first eigenvector of

XTXðXTXþ kIÞ�1XTX: By using SVD, we have X ¼ UDVT , and
XTXðXTXþ kIÞ�1XTX ¼ VD2ðD2 þ kIÞ�1D2VT: It is now proved that
â is the the first column of V, which is the also the first eigenvector v

72 K. WANG AND F. TSUNG



in Model (2), and b̂ ¼ ðXTXþ kIÞ�1XTXâ ¼ VðD2 þ kIÞ�1D2VTv ¼
d21=ðd21 þ kÞv / v, where d1 is the first diagonal element of D:

Proof of Part (b) . Consider a new problem

fa�, b�g ¼ argmina, bjjX� X
b

1þ k
aTjj2F þ kjj b

1þ k
jj2 s:t:aTa ¼ 1:

It can be seen that a� ¼ â ¼ v and b� ¼ ð1þ kÞb̂ / v, and thus this
problem is equivalent to Model (3). Note that

jjX� X
b

1þ k
aTjj2F þ kjj b

1þ k
jj2

¼ tr XXT � Xa
bT

1þ k
XT � X

b

1þ k
aTXT þ X

bbT

ð1þ kÞ2 X
T

 !

þ k

ð1þ kÞ2 trðb
TbÞ

¼ trðXXTÞ þ 1
1þ k

ð�2trðaTXTXbÞ þ 1
1þ k

trðbTXTXbÞ

þ k
1þ k

trðbTbÞÞ

¼ trðXXTÞ þ 1
1þ k

�
� 2trðaTXTXbÞ þ tr bT

XTXþ kI
1þ k

b

� ��
,

which implies

fa�,b�g ¼ argmina,b � 2aTXTXbþ bT
XTXþ kI
1þ k

b s:t:aTa ¼ 1:

As k ! 1, ðXTXþ kIÞ=ð1þ kÞ ! I and �2aTXTXbþ bTb ¼
ðXTXa� bÞTðXTXa� bÞ � aTXTXXTXa, so the above problem is fur-
ther equivalent to

fa�,b�g ¼ argmina,bjjXTXa� bjj2 � jjXTXajj2 s:t:aTa ¼ 1:
w

Appendix B

Proof of Proposition 1. When a is fixed, y ¼ XTXa is known, and
Model (6) is reduced to

min
fcs , gsj , hsjtgs, j, t

jjy� bjj2 þ k1
XS
s¼1

cs þ k2
XS
s¼1

XMs

j¼1

gsj þ k3
XS
s¼1

XMs

j¼1

XTs

t¼1

jhsjtj

s:t: bsjt ¼ csgsjhsjt , s ¼ 1, :::, S, j ¼ 1, :::,Ms, t ¼ 1, :::,Ts,

cs � 0, gsj � 0:

First, given cs and gsj, ĥsjt ¼ argminhsjt ðysjt � csgsjhsjtÞ2 þ k3jhsjtj: It is
clear that if csgsj ¼ 0, ĥsjt ¼ 0 due to k3 > 0:Otherwise, by letting the subgra-
dient being zero, i.e., �2csgsjðysjt � csgsjhsjtÞ þ k3g ¼ 0 ðg 2 ½�1, 1�Þ, we
have

ĥsjt ¼ sign
ysjt
csgsj

� �
� jysjtj

csgsj
� k3
2ðcsgsjÞ2

 !
þ
:

Thus, the updating equation of hsjt can be summarized as

ĥsjt ¼ Iðcsgsj > 0Þ � signðysjtÞ �
jysjtj
csgsj

� k3
2ðcsgsjÞ2

 !
þ
:

Second, if cs and hsjt are given, ĝsj ¼
argmingsj

PTs
t¼1 ðysjt � csgsjhsjtÞ2 þ k2gsj, s:t:gsj � 0: If cs ¼ 0 or all hsjt ¼

0, ĝsj ¼ 0 as k2 > 0: Otherwise, as the simplified problem is
convex, the Karush-Kuhn-Tucker (KKT) sufficient conditions can be
given as

gsj � 0, s � 0, gsjs ¼ 0, � 2
XTs

t¼1

ðysjt � csgsjhsjtÞcshsjt þ k2 � s ¼ 0,

where s is the Lagrange multiplier. Solving these equations gives
ĝsj ¼ ðPTs

t¼1 ysjtcshsjt � k2=2Þþ=
PTs

t¼1 ðcshsjtÞ2: To sum up, the updating
equation of hsjt is

ĝsj ¼ Iðcs > 0Þ � Ið9t, hsjt 6¼ 0Þ

�
XTs

t¼1

ðcshsjtÞ2PTs

t¼1
ðcshsjtÞ2

ysjt
cshsjt

� k2
2
PTs

t¼1
ðcshsjtÞ2

0
@

1
A

þ

:

Finally, given gsj and hsjt, ĉs ¼
argmincs

PMs
j¼1

PTs
t¼1 ðysjt � csgsjhsjtÞ2 þ k1cs, s:t:cs � 0: Obviously, if all

gsjhsjt ¼ 0, ĉs ¼ 0 as k1 > 0: Otherwise, we also solve this convex prob-
lem based on the KKT sufficient conditions as

cs � 0, s � 0, css ¼ 0, � 2
XMs

j¼1

XTs

t¼1

ðysjt � csgsjhsjtÞgsjhsjt þ k1 � s ¼ 0,

which yields ĉs ¼ ðPMs
j¼1

PTs
t¼1 ysjtgsjhsjt � k1=2Þþ=

PMs
j¼1

PTs
t¼1 ðgsjhsjtÞ2:

Thus, the closed form updating equation of cs is

ĉs ¼ Ið9ðj, tÞ, gsjhsjt 6¼ 0Þ

�
XMs

j¼1

XTs

t¼1

ðgsjhsjtÞ2PMs

j¼1

PTs

t¼1
ðgsjhsjtÞ2

ysjt
gsjhsjt

� k1
2
PMs

j¼1

PTs

t¼1
ðgsjhsjtÞ2

0
@

1
A

þ

:

w

Proof of Proposition 2. When b is fixed, the problem (6) is reduced to

mina jjy� bjj2 � jjyjj2 s:t:y ¼ XTXa, aTa ¼ 1,

so â ¼ argmaxaaTXTXb, s:t:aTa ¼ 1: By the Cauchy–Schwartz inequal-
ity, aTXTXb � jjajj � jjXTXbjj, and the equality holds when a / XTXb:
Therefore, the updating equation of a is â ¼ XTXb=jjXTXbjj: w
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