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Impact of Information Sharing on Statistical Quality tier-1 supplier sorts components such that a needle from the upstream
Control manufacturer can be matched with the body that they have produced

in order to satisfy the tolerance requirements. If a needle is slightly too

Fugee Tsung large for the body, the assembly may be sticky or have reliability prob-

lems. If a needle is too small, fuel leakage or other failures may occur.

Abstract—With recent advances in information technology (IT), the re- The potentlal quality IQSS due .to imperfect matchlng will be estimated
search on and practice of information sharing is now having a significant 'F’V a quality lOSS. function. Gutierrest a!.[8] have studied thg producl-
impact on many aspects of supply chains. Nevertheless, few investigationstion control of this process. Here we will demonstrate how information
focus on the impact of information sharing on product and process quality. sharing has an impact on process capability and quality.

Furthermore, itis still not clear how and what information should be shared

or used, and how to quantify the benefits of information sharing interms g Quality Measure

of quality improvement. In this research, a “matching problem” is used to

demonstrate the impact of information sharing on quality. We quantify and Process capability indices such @ and C,;, have been widely
compare the impact of different information-sharing strategies on process ysed as a measure of quality, wifh measuring potential process per-

and product quality, and suggest that real-time information sharing may formance and’,, measuring actual process performance [12], [17].
lead to dramatic quality improvement for an assembly process, the example P ’

here being a two-stage supply chain. The proposed approach to evaluate There are many manUfaCt_urers inthe U.S. and Japan who require sup-
information sharing in terms of quality improvement can be extended to a  pliers to produce items with, andC),; of more than 1.0. However,

more complex supply chain. we will show that greater process capability for a single process may
Index Terms—Automatic process control, engineering process control, in fact lead to worse overall assembly quality.
statistical process control, supply chain management. Therefore, an alternative measure is needed to quantify the process

and product quality. A quality loss function can provide this alternative,
by relating process and product loss to the “loss to society” [11], [19
I. INTRODUCTION y gp P ty" [11], [29]
2 2

In past annual benchmarking meetings of some U.S. automotive QL=k(p—=T)" +07) 1)
companies, it has been observed that the quality of the individl,ﬁ1 re
parts they produce usually equals the quality of Japanese parts, bu?
that assembled American automobiles often undermine rather thaf
showcase the quality of their parts. One accepted reason for the hig target or nominal dimension:
quality of assembled Japanese automobiles is the well-established constant used to convert the’function into monetary units
cooperqtive relgtionship that exists between Japanese manUfaCt.\'—lBerSsituations with no fixed targ&t, such as the smaller-the-better and
and their suppliers, who they generally regard_ as extendgd factonl ?ger-the-better problems, some modifications are needed (see [19]).
The Japanese case suggests that supply-chain cooperation may pe”a

itical factor f lity | t and i it Weé assume that without loss of generalify,= 0 andk = 1. The
critical factor for quality improvement and greater competitiveness hnuality loss function will be used to quantify the quality of matching.
the global marketplace.

Supply chain management (SCM) has received an enormous amo@{!ﬁﬁ{;?:v\:ﬂnueen?firlln;csjr;n”?;lfonszharln@(I) Is defined as the percentage
of attention in both industry and academic circles. (e.g., [14] and the
references therein). One recent interest in SCM is in incorporating in- VI =100(QLy — QL)/ QL% 2)
formation flow among various members of a supply chain. Due to the

recent advances in information technology (IT) such as the develophere@ Lo is the quality loss without information sharing, afid. is

ment of Internet tools, many research projects on and practical applitize quality loss of the process to be evaluated with information sharing.
tions of supply-chain information sharing have made a positive contri- o

bution to inventory control, production scheduling, and delivery plaf=- Key Results and Contributions

ning (e.g., [3], [5], [15]), but little work has been done that is relevantto In this paper, we quantify the impact of various information sharing
the area of product and process quality. The critical questions of wkatategies on process and product quality in a two-stage supply chain
information should be used or shared and how to use or share it,f@gnework. Our key results can be summarized as follows:

well as how to quantify the benefits of information sharing in terms of . \without information sharing, although an individual process may
quality improvement, have been largely ignored. be controlled to have greater process capability and dimensional
) quality, that enhancement may in fact lead to poor assembly
A. Matching Problem matching.

In this paper, a “matching problem” is used to illustrate the impact « Controlling the process based on information sharing will lead to
of supply-chain information sharing on quality. We specifically focus  better assembly matching, even though the capability and dimen-
on the process capability and quality improvement of two components  sional quality of an individual process may be adversely affected.
that are used in fuel injectors, in an actual automotive assembly facility: « As the process data are not fully utilized by merely sharing simple
bodies from a tier-1 supplier and needles from a tier-2 supplier. The descriptive statistics, real-time information sharing may have a
greater impact in quality improvement than non real-time infor-
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A

Section IV quantifies the value of information sharing in terms of
quality improvement. Concluding remarks and implications for future (a)
research issues are provided in Section V.

Il. PROCESSWITHOUT AND WITH INFORMATION SHARING

1 ]
Meedle Dimension

A. Without Information Sharing

,._---....-..-..-.._........._.._.._.-..

Needle and body manufacturers, like many conventional tier-1 and
tier-2 suppliers, have little communication with each other, and there-
fore represent a situation of no information sharing.

To match two sets of components to form assemblies without in-
formation sharing, Glover [6] developed an algorithm involving mea-
suring and sorting all components to maximize the matching number.
Lee, Hausman, and Gutierrez [13] suggested grouping the components
into different classes for operational convenience. As it is not our in-
tention to develop an optimal matching method, Glover’s basic sorting
and matching approach is used throughout this paper.

Consider the needle diametBf* with meanyu,, and a standard de-
viation ¢,,, and the body diameteP? with mean;:;, and a standard
deviationss. 1, @andpuy, can be controlled by resetting the production
equipment, but2 ando? cannot be reduced without implementing
other quality control techniques.

Without information sharing, the needle manufacturer—the tier-2 ()
supplier—is only responsible for producing needles within the specifi-
cation limits. Thus, within the limits the needle distribution is not care-
fully controlled. On the other hand, the body manufacturer—the tier-1
supplier—is responsible for producing bodies within the specification
limits as well as making acceptable assemblies. Without information
from upstream, the tier-1 supplier will determine their machine setting
based only on internal quality requirements. We can see from Fig. 1(a)
that although the body distribution is controlled so that it has a greater
process capability and dimensional quality (= T'), this may lead to  Fig. 1. Impact of information sharing: (a) processes without information

poor assembly matching. sharing; (b) processes with one-way information sharing; and (c) processes
with two-way information sharing.

(b)

Body Dimension

B. With One-Way Information Sharing

For a process with information sharing, we will match the compavhere the optimal solution is to set both process means equally and
nents to form an assembly in the same sorting and matching approahtheir targets (for proofs, see [13]). However, if an alternative crite-
However, an advantage is derived from the proper control of the compi®n, the probability of next matching, is used, the optimal settings of
nent distribution based on feed-forward information before matchinie needle and body machines may not be the same and the processes
If one-way information sharing is possible, which means that the dowfay not be on their targets, especially when they have different process
stream manufacturers can obtain information from the upstream mawariations [13].
facturers, but not the other way around, there is still a chance to improveere, we can see from Fig. 1(c) that controlling both the needle and
the quality of assembly matching. body distributions so that they are close to each other and also close to

There have been some studies to determine the optimal macHip@ir targets 4, = u,, = T') based on information sharing will lead
setting, i.e., the optimal process mean of a single process, based®hetter assembly matching, as well as to greater individual process
upstream information. These studies usually consider the cost/los€apability and dimensional quality. This will be studied using a numer-
exceeding some specification limits [7], [10], [16]. We can see froigal example later.

Fig. 1(b) that bringing the body distribution closer to the needle dis- Note that, in the two-way information sharing case with= ..,
tribution (4, = p..) based on feed-forward information may lead téhe quality loss of the assembly, i.e., the mean squared error of the
better assembly matching, i.e., largéf, although the process capa-clearance, is

bility and dimensional quality of the body is adversely affected. This ) .

will be demonstrated by a numerical example later. 0y +0n —2pop0, —1<p <1 (3)

C. With Two-Way Information Sharing wherep is the correlation between body and needle in the matching

. . . . . sequence. Thus, theoretically, the b@dt we can have is
If two-way information sharing is possible, which means that the g y be

upstream and downstream manufacturers can obtain information from , 9
each other, there will be a greater chance to improve the quality of QLyr = (0o —0n) (4)
assembly matching.

Leeet al.[13] and Gutierrezt al. [8] deal with the cooperation of with p = 1, which assumes that the bodies and needles are perfectly
settings for multiple processes for assembly operations, which is oclyrrelated. Thé) L v r value approaches to zero whenis close tar,,
achievable with two-way information sharing. Different criteria mayput in many cases a significant loss may occur whgis different from
lead to different suggestions for both machine settings. Our studyois. This theoretical best quality loss value with two-way information
based on the criterion of maximizing long-run expected matchingsharing can be used as a lower bound for a non real-time information
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sharing situation. The difference for the real-time information sharirrgduce the quality loss of the matching process by using real-time in-

case will be discussed in the next section. formation. This will be demonstrated by examples in the following sec-
tion.
IIl. PROCESS WITHREAL-TIME INFORMATION SHARING For the purpose of benchmarking, we study the situation with

. . . L = 0. A closed-form solution of the assembly quality loss with the
Process data are not fully utilized by merely sharing simplg,, jenkins approach without bounds is derived. Consider the needle
descriptive statistics, e.g., the mean and standard deviation Val‘iﬁ?hensionD? in (5), and apply its EWMA forecast; in (7) to adjust

With recent advances in IT, real-time process data sharing has bec‘?ﬁéebody dimensio? in (6), we then have the assembly clearance
common, and this has great potential for further quality improvement. '

Both statistical process control (SPC) and automatic process control b "

(APC) [also called engineering process control (EPC)] are popular et =Di+ 2z — Dy

quality control techniques that utilize real-time process data [20]-[22]. ==(1—-9B)/(1 - ¢B)

Here, an SPC/APC method—the Box-Jenkins bounded adjustment + &A1 —6B)/{(1- B+ AB)(1-6éB)}

approach—is used to adjust the body machine setting based on (- 9B)/(1— B 9

real-time needle process data (see [2], [9], and the references therein). e /(1= ¢B) ©)
As a process with large volumes of routinely collected data (e.g., >

10 000 injectors/day) is often correlated, we consider HjthandD?  whereB is the usual backward shift operator, i.Bs; = ;. Here,

as stationary autoregressive-moving average processes [ARMA(L, 49fcan also be presented as

DY = 6Dy + e — e G e =3 vre Y Gk =Y ker—x = I+IT-IT1. (10)
k=0 k=0 k=0
and
Note that the summation of itenrdsand! ! is the body dimension after
Df = @D?—l +5p — Py (6) EWMA adjustment, and iterhI I presents the needle dimension. The
values ofyx., (i, 1, obtained by equating (10) with (9) are
where|o| < 1,10] < 1, |¢| < 1, |¥| < 1, & represents white noise
with meanu&_ar_ld standard deviatios., and<; with mean;.. and o =1, Ve =" e =10) k>0 (11)
standard deviation. .

The approach is first to calculate the exponentially weighted moving G =0, \
average (EWMA) statistic from the real-tinfe}’ data G = T s ((1 S Ly & R Wy
. 1R (g — ¢)) k>0 (12)
Zt = /\thl + (1 - A)Zt_]. (7)
At each pointin time, the estimated EWMA is used as a forecast, Whigﬂd
. 0 . n o .
gives100 A% weight to the preserd®; and100(1 — )% weight to the o = 1, e = b= 6) k> 0. (13)

previous history, which is gradually discounted. The EWMA scheme
is not necessarily the theoretically best one, but has been proven t%‘ﬁce, the quality loss of the clearance is

robust and useful for correlated processes. Note that in industrial prac-

tice, athree-term adjustment scheme, i.e., proportional-integral-deriva-

tive (PID) scheme, is also a commonly used method [1], [23], [24]. In QL = var(I + II) + var(I1I) — 2cov(I + I, I1I)  (14)
many situations, only one or two of these three terms are used [25]. In

particular, if the proportional and derivative terms are set to zero, Wehere

have the integral (I) scheme, which is equivalent to the EWMA. We

focus on the EWMA scheme throughout this paper. R, R >

Although the Box—Jenkins approach can be employed to adjust the var(I + IT) =02 > Wi + 07 > G + 2000 > tw
body machine setting by the amount of EWMA forecast after every ) k=0 ZA:O ) k=0
observation, the more practical bounded approach will be described. =0 (1200 4+97)/(1=¢")

Here, the control rule is to adjust the body machine setting, i.e., the 9 A2 2
target of D?, to z; as soon as +oe (1—X—0¢)? (1=X2=6)7/A2-X)

+(0-9)°/(1-¢")
|ze = 2| 2 L (8) +2(1=XA=6)(#—0)/(1— 6+ A))
. . . . + 20506#/((19 - 19)

wherer is time zero or the time you last made an adjustment,dahd 1-A—9¢
are the bounds. The bounds are commonly established on the basis of ((1=2=0)/(1 -9+ Ap)
engineering judgment, taking into consideration the cost of adjustment + (6= 6)/(1=dp)) (15)

and the cost of a mismatch. A systematic way to deterniirean be
found in [2]. As long as the EWMA falls within the bounded’ it will
serve as a basis for the next forecast. When the EWMA falls beyoﬂa
the bounds, adjustment i? will force the clearance close to zero. -
Here, the proposed approach will avoid the excessive cost and incon- var(II) = o> Z 02 = o2(1— 266 4 6%)/(1 - 6°). (16)

venience of making an adjustment after every observation, and largely e
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Note thattheov(I+1I, I11) value, i.e., the covariance between body
and needle cannot be calculated by

cov(I+ 1L III) = ococ b+ 02y G (17)

k=0 k=0

as in practice the injector matching does not happen in the origin
production sequence on a real-time basis, but by a sorted sequence
a batch basis. To consider the correlation between body and needle a
sorting and matching, the theoretically bést we may have is to let
the body and needle be perfectly correlated. Thus, by applying

TABLE |
COMPARISON OF FOUR PROCESSES
WITHOUT/WITH INFORMATION SHARING

Process Cp ct QL VI(%)

(a) No sharing  0.73 (0.30) 2.75 (0.01) 6.11 (5.02) 0 (0)

)

(b) One-way  0.73 (0.30) 2.41 (0.20) 3.26 (2.45) 37.9 (14.8)

(c) Two-way  1.23(0.01) 2.75 (0.01) 0.53 (0.02) 74.5 (29.3)
)

(d) Real-time  1.23 (0.01) 1.68 (0.03) 0.12 (0.01) 94.0 (6.8)

Note: numbers in ( ) are the corresponding standard deviations.

cov(l + 11, ITT) = y/var(I + IT)/var(II1) (18)

to (14), we obtain a lower bound for a real-time information sharing
situation

QLrr = (Vvar(T+1T) - \/var(III)y (19)
wherevar (I + II)andvar(III) are given by (15) and (16).

IV. INFORMATION QUANTIFICATION WITH EXAMPLES

In this section, we investigate the impact and quantify the value of
information sharing in terms of improvement in quality loss. We con-
sider the processes of needle dimensizih and body dimensio®?
as

D =0.95D;"; + e — 0.8¢;_
D} =0.5D] ; + 2 — 0.4z,

wheree; values have standard deviation = 1.2, ands, values have
standard deviation. = 0.6, the parameters being based on the field
estimations cited in [8]u. and.. will depend on the current machine
setting.

By applying (4) and (19) to these processes, we obtain their
lower bound for a nonreal-time information sharing situation:
QL~yr = 0.529, and the lower bound for a real-time information
sharing situation@QLg, = 0.106. The difference between these
two bounds indicates the possible quality improvement we may
make by real-time information sharing. Here, we simulate 30 days of
operation with component production of 10000 units/day, and treat
daily production as a batch. The specification limits of both the needle
and body are scaled to He5, with nominal values equal to zero. Four
types of processes are studied.

1) Process without information sharing: assume that the daily set-
ting of the needle machine varies betwedrnand 1, since this is
good enough to be within the specification limits, while the daily
setting of the body machine is fixed at zero, since no information

both needle and body machine settings are at zero. In this
case, process capacities of needle and bady, and C’,‘jk,

are both improved to acceptable values (> 1.0). Also, quality
loss is 0.53, which is quite close to the theoretical lower

bound:QQ L~ = 0.529, and the improvement is quantified by

VI = 74.5%.

4) Process with real-time information sharing: to implement

the modified Box—Jenkins adjustment approach, the EWMA
statistic is calculated from the real-tind&' data withA = 0.2

Zy = 02D?—1 + O.SZL_l.

Note that a least squares estimateaatan be obtained using
the work of Montgomery and Mastrangelo (1991). Based on the
control rule withL = 0.8 (see [2] on how to determing), we
adjust the body machine setting4pas soon as

|z¢ — 2| > 0.8.

This approach is graphically presented in Fig. 2. Fig. 2(a) shows
the dimensional readings of needles, along with the EWMA sta-
tistics. In Fig. 2(b), the line based on the crosses shows the adjust-
ments applied to the body process, and the dashed lines are the
corresponding bounds which indicate how the EWMA statis-
tics trigger the adjustment. The body processes without and with
adjustment are compared in Fig. 2(c). Fig. 2(d) compares the
assembly dimensions without and with adjustment. We can see
from Table | that the process capability of body manufacturing
C{;k has deteriorated to 1.68 due to the active adjustment, but it
is still within the acceptable range (>1.0). More importantly, the
quality loss of the matched assembly is reduced to 0.12, which
is fairly close to the theoretical boun@Lrr = 0.106. Its

VI = 94.0% indicates a dramatic improvement of this process.

V. CONCLUSION

from upstream is obtained. The simulation results in Table I showIn this research, we quantify and compare the impact of different
that although the process capability of body manufactwi’(jg information-sharing strategies on process and product quality. We in-
is as great as 2.75, the quality Igg€ of matched assembly is asdicate that real-time information sharing may lead to dramatic quality
high as 6.11, and it} I is zero as defined. We will see to whatimprovement for an assembly process, an example being the two-stage
degree the quality loss can be improved by information sharingupply chain.

2) Process with one-way information sharing: the body manufac-In reality, some practical issues need to be addressed. First, to mo-

turer determines their daily setting according to the setting tif’ate the information-sharing strategy, it is critical to suggest a mech-
the needle machine. Table | indicates that the process capabitityism that spreads the benefits of information sharing between the
of body manufacturingiﬁk is less than process a) due to its desupplier and manufacturer. Also, it is important to quantify the invest-
viation from the target, but its quality los3L is much improved ment required to effect a real-time information sharing process before
with VI = 37.9%. proposing this strategy.

3) Process with two-way information sharing: by optimizing The proposed approach to evaluate the impact of information sharing

expected matchings from both distributional informationpn quality can be directly extended to a more complex supply chain.
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Fig. 2. The Box-Jenkins bounded adjustment approach: (a) cross: needle dimension, circle: EWMA statistic; (b) cross: body adjustthérdgyuddshcircle:
EWMA statistic; (c) cross: body dimension without adjustment, circle: with adjustment; and (d) cross: assembly dimension without adjusteentithcirc
adjustment.
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tive principal component monitoring@ual. Reliab. Eng. Inf.vol. 15, €dge-weighted RAP [3], [4] can work fairly well within specific
pp. 135-144, 1999. domains, but not in varied domains. This poses the motivation to
——, "Statistical monitoring and diagnosis of automatic controlled procomputer-realized recognition and acquisition, i.e., learning, of
ggg%eiousg‘gudbﬂi’:éc PCA," Int. J. Prod. Res., vol. 38, pp. 625-63{ymain-specific knowledge. The earliest learning based method for
—,’“On thF:ee-term édjustment schemes for statistical process cJﬁAP was by [5]. _ACtlon seque_nces which were succ_essful in the
trol,” Int. J. Indust. Eng., vol. 6, pp. 161-170, 1999, to be published. Past are parametrically generalized to form macro actions. Another
F. Tsung and J. Shi, “Integrated design of run-to-run PID controller addarning based method for RAP is by analogy learning [6]. Refer-
SPC monitoring for process disturbance rejectidiE"Trans, vol. 31, ence [7] proposed a supervised ana|ogy |earning, between rote and
pp. 517-527, 1999. L o generalization, for RAP.
F. Tsung, J. Shi, and C. F. J. Wu, “Joint monitoring of PID controlle . . . L
processes,J. Qual. Technol.vol. 31, pp. 275-285, 1999. As another stream, searching-weighted RAP, in principle, has two
F. Tsung, H. Wu, and V. N. Nair, “On the efficiency and robustness dypes, i.e., by universal and by domain-specific searching mecha-
discrete proportional-integral control schemé&thnometricsvol. 40,  nisms. However, existing searching-weighted RAP is all by universal
pp. 214-222, 1998. searching mechanisms, and the type by domain-specific searching
mechanisms is still a blank, neither manual nor computer-realized.
Random approximation is a universal searching mechanism without
heuristics. References [8]-[10] proposed an off-line blind enumerating
searching for RAP. Reference [11] formulated this idea of RAP as
a Boltzmann machine. Means-ends analysis searching mechanism
is a primary universal searching heuristics. It is first to compute the
difference between the current and the desired world state and then to
find a related action to reduce the existing difference. In fact, this is an
on-line error compensation, as in feedback based control ([12] gave
a system-and-control perspective to RAP). Other exploited universal
searching heuristics are such as hierarchical (i.e., abstracting) expression
of actions and world states, and opportunistic mechanism of human
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