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Impact of Information Sharing on Statistical Quality
Control

Fugee Tsung

Abstract—With recent advances in information technology (IT), the re-
search on and practice of information sharing is now having a significant
impact on many aspects of supply chains. Nevertheless, few investigations
focus on the impact of information sharing on product and process quality.
Furthermore, it is still not clear how and what information should be shared
or used, and how to quantify the benefits of information sharing in terms
of quality improvement. In this research, a “matching problem” is used to
demonstrate the impact of information sharing on quality. We quantify and
compare the impact of different information-sharing strategies on process
and product quality, and suggest that real-time information sharing may
lead to dramatic quality improvement for an assembly process, the example
here being a two-stage supply chain. The proposed approach to evaluate
information sharing in terms of quality improvement can be extended to a
more complex supply chain.

Index Terms—Automatic process control, engineering process control,
statistical process control, supply chain management.

I. INTRODUCTION

In past annual benchmarking meetings of some U.S. automotive
companies, it has been observed that the quality of the individual
parts they produce usually equals the quality of Japanese parts, but
that assembled American automobiles often undermine rather than
showcase the quality of their parts. One accepted reason for the high
quality of assembled Japanese automobiles is the well-established
cooperative relationship that exists between Japanese manufactures
and their suppliers, who they generally regard as extended factories.
The Japanese case suggests that supply-chain cooperation may be a
critical factor for quality improvement and greater competitiveness in
the global marketplace.

Supply chain management (SCM) has received an enormous amount
of attention in both industry and academic circles. (e.g., [14] and the
references therein). One recent interest in SCM is in incorporating in-
formation flow among various members of a supply chain. Due to the
recent advances in information technology (IT) such as the develop-
ment of Internet tools, many research projects on and practical applica-
tions of supply-chain information sharing have made a positive contri-
bution to inventory control, production scheduling, and delivery plan-
ning (e.g., [3], [5], [15]), but little work has been done that is relevant to
the area of product and process quality. The critical questions of what
information should be used or shared and how to use or share it, as
well as how to quantify the benefits of information sharing in terms of
quality improvement, have been largely ignored.

A. Matching Problem

In this paper, a “matching problem” is used to illustrate the impact
of supply-chain information sharing on quality. We specifically focus
on the process capability and quality improvement of two components
that are used in fuel injectors, in an actual automotive assembly facility:
bodies from a tier-1 supplier and needles from a tier-2 supplier. The
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tier-1 supplier sorts components such that a needle from the upstream
manufacturer can be matched with the body that they have produced
in order to satisfy the tolerance requirements. If a needle is slightly too
large for the body, the assembly may be sticky or have reliability prob-
lems. If a needle is too small, fuel leakage or other failures may occur.
The potential quality loss due to imperfect matching will be estimated
by a quality loss function. Gutierrezet al.[8] have studied the produc-
tion control of this process. Here we will demonstrate how information
sharing has an impact on process capability and quality.

B. Quality Measure

Process capability indices such asCp andCpk have been widely
used as a measure of quality, withCp measuring potential process per-
formance andCpk measuring actual process performance [12], [17].
There are many manufacturers in the U.S. and Japan who require sup-
pliers to produce items withCp andCpk of more than 1.0. However,
we will show that greater process capability for a single process may
in fact lead to worse overall assembly quality.

Therefore, an alternative measure is needed to quantify the process
and product quality. A quality loss function can provide this alternative,
by relating process and product loss to the “loss to society” [11], [19]

QL = k((�� T )2 + �2) (1)

where
� estimate of the process mean;
� estimate of the process standard deviation;
T target or nominal dimension;
k constant used to convert the function into monetary units.

For situations with no fixed targetT , such as the smaller-the-better and
larger-the-better problems, some modifications are needed (see [19]).
We assume that without loss of generality,T = 0 andk = 1. The
quality loss function will be used to quantify the quality of matching.
Also, the value of information sharing (V I) is defined as the percentage
of improvement in quality loss

V I = 100(QL0 �QL)=QL0% (2)

whereQL0 is the quality loss without information sharing, andQL is
the quality loss of the process to be evaluated with information sharing.

C. Key Results and Contributions

In this paper, we quantify the impact of various information sharing
strategies on process and product quality in a two-stage supply chain
framework. Our key results can be summarized as follows:

• Without information sharing, although an individual process may
be controlled to have greater process capability and dimensional
quality, that enhancement may in fact lead to poor assembly
matching.

• Controlling the process based on information sharing will lead to
better assembly matching, even though the capability and dimen-
sional quality of an individual process may be adversely affected.

• As the process data are not fully utilized by merely sharing simple
descriptive statistics, real-time information sharing may have a
greater impact in quality improvement than non real-time infor-
mation sharing.

• For the purpose of benchmarking, the lower bounds of quality
loss for both real-time and nonreal-time information sharing pro-
cesses are derived.

The remainder of this paper is organized as follows: Section II
discusses the processes without and with information sharing. Sec-
tion III investigates the processes with real-time information sharing.
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Section IV quantifies the value of information sharing in terms of
quality improvement. Concluding remarks and implications for future
research issues are provided in Section V.

II. PROCESSWITHOUT AND WITH INFORMATION SHARING

A. Without Information Sharing

Needle and body manufacturers, like many conventional tier-1 and
tier-2 suppliers, have little communication with each other, and there-
fore represent a situation of no information sharing.

To match two sets of components to form assemblies without in-
formation sharing, Glover [6] developed an algorithm involving mea-
suring and sorting all components to maximize the matching number.
Lee, Hausman, and Gutierrez [13] suggested grouping the components
into different classes for operational convenience. As it is not our in-
tention to develop an optimal matching method, Glover’s basic sorting
and matching approach is used throughout this paper.

Consider the needle diameterDn

t with mean�n and a standard de-
viation �n, and the body diameterDb

t with mean�b and a standard
deviation�b. �n and�b can be controlled by resetting the production
equipment, but�2n and�2b cannot be reduced without implementing
other quality control techniques.

Without information sharing, the needle manufacturer—the tier-2
supplier—is only responsible for producing needles within the specifi-
cation limits. Thus, within the limits the needle distribution is not care-
fully controlled. On the other hand, the body manufacturer—the tier-1
supplier—is responsible for producing bodies within the specification
limits as well as making acceptable assemblies. Without information
from upstream, the tier-1 supplier will determine their machine setting
based only on internal quality requirements. We can see from Fig. 1(a)
that although the body distribution is controlled so that it has a greater
process capability and dimensional quality (�b = T ), this may lead to
poor assembly matching.

B. With One-Way Information Sharing

For a process with information sharing, we will match the compo-
nents to form an assembly in the same sorting and matching approach.
However, an advantage is derived from the proper control of the compo-
nent distribution based on feed-forward information before matching.
If one-way information sharing is possible, which means that the down-
stream manufacturers can obtain information from the upstream manu-
facturers, but not the other way around, there is still a chance to improve
the quality of assembly matching.

There have been some studies to determine the optimal machine
setting, i.e., the optimal process mean of a single process, based on
upstream information. These studies usually consider the cost/loss of
exceeding some specification limits [7], [10], [16]. We can see from
Fig. 1(b) that bringing the body distribution closer to the needle dis-
tribution (�b = �n) based on feed-forward information may lead to
better assembly matching, i.e., largerV I , although the process capa-
bility and dimensional quality of the body is adversely affected. This
will be demonstrated by a numerical example later.

C. With Two-Way Information Sharing

If two-way information sharing is possible, which means that the
upstream and downstream manufacturers can obtain information from
each other, there will be a greater chance to improve the quality of
assembly matching.

Leeet al. [13] and Gutierrezet al. [8] deal with the cooperation of
settings for multiple processes for assembly operations, which is only
achievable with two-way information sharing. Different criteria may
lead to different suggestions for both machine settings. Our study is
based on the criterion of maximizing long-run expected matchings,

Fig. 1. Impact of information sharing: (a) processes without information
sharing; (b) processes with one-way information sharing; and (c) processes
with two-way information sharing.

where the optimal solution is to set both process means equally and
on their targets (for proofs, see [13]). However, if an alternative crite-
rion, the probability of next matching, is used, the optimal settings of
the needle and body machines may not be the same and the processes
may not be on their targets, especially when they have different process
variations [13].

Here, we can see from Fig. 1(c) that controlling both the needle and
body distributions so that they are close to each other and also close to
their targets (�b = �n = T ) based on information sharing will lead
to better assembly matching, as well as to greater individual process
capability and dimensional quality. This will be studied using a numer-
ical example later.

Note that, in the two-way information sharing case with�b = �n,
the quality loss of the assembly, i.e., the mean squared error of the
clearance, is

�
2

b + �
2

n � 2��b�n � 1 < � < 1 (3)

where� is the correlation between body and needle in the matching
sequence. Thus, theoretically, the bestQL we can have is

QLNR = (�b � �n)
2 (4)

with � = 1, which assumes that the bodies and needles are perfectly
correlated. TheQLNR value approaches to zero when�b is close to�n,
but in many cases a significant loss may occur when�b is different from
�n. This theoretical best quality loss value with two-way information
sharing can be used as a lower bound for a non real-time information
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sharing situation. The difference for the real-time information sharing
case will be discussed in the next section.

III. PROCESS WITHREAL-TIME INFORMATION SHARING

Process data are not fully utilized by merely sharing simple
descriptive statistics, e.g., the mean and standard deviation values.
With recent advances in IT, real-time process data sharing has become
common, and this has great potential for further quality improvement.
Both statistical process control (SPC) and automatic process control
(APC) [also called engineering process control (EPC)] are popular
quality control techniques that utilize real-time process data [20]–[22].
Here, an SPC/APC method—the Box–Jenkins bounded adjustment
approach—is used to adjust the body machine setting based on
real-time needle process data (see [2], [9], and the references therein).

As a process with large volumes of routinely collected data (e.g., >
10 000 injectors/day) is often correlated, we consider bothDn

t andDb

t

as stationary autoregressive-moving average processes [ARMA(1, 1)]

Dn

t = �Dn

t�1 + �t � ��t�1 (5)

and

Db

t = 'Db

t�1 + "t � #"t�1 (6)

wherej�j < 1, j�j < 1, j'j < 1, j#j < 1, �t represents white noise
with mean�� and standard deviation��, and"t with mean�" and
standard deviation�".

The approach is first to calculate the exponentially weighted moving
average (EWMA) statistic from the real-timeDn

t data

zt = �Dn

t�1 + (1� �)zt�1: (7)

At each point in time, the estimated EWMA is used as a forecast, which
gives100 �% weight to the presentDn

t and100(1��)% weight to the
previous history, which is gradually discounted. The EWMA scheme
is not necessarily the theoretically best one, but has been proven to be
robust and useful for correlated processes. Note that in industrial prac-
tice, a three-term adjustment scheme, i.e., proportional-integral-deriva-
tive (PID) scheme, is also a commonly used method [1], [23], [24]. In
many situations, only one or two of these three terms are used [25]. In
particular, if the proportional and derivative terms are set to zero, we
have the integral (I) scheme, which is equivalent to the EWMA. We
focus on the EWMA scheme throughout this paper.

Although the Box–Jenkins approach can be employed to adjust the
body machine setting by the amount of EWMA forecast after every
observation, the more practical bounded approach will be described.

Here, the control rule is to adjust the body machine setting, i.e., the
target ofDb

t , to zt as soon as

jzt � zrj � L (8)

wherer is time zero or the time you last made an adjustment, and�L
are the bounds. The bounds are commonly established on the basis of
engineering judgment, taking into consideration the cost of adjustment
and the cost of a mismatch. A systematic way to determineL can be
found in [2]. As long as the EWMA falls within the bounded�L it will
serve as a basis for the next forecast. When the EWMA falls beyond
the bounds, adjustment inDb

t will force the clearance close to zero.
Here, the proposed approach will avoid the excessive cost and incon-

venience of making an adjustment after every observation, and largely

reduce the quality loss of the matching process by using real-time in-
formation. This will be demonstrated by examples in the following sec-
tion.

For the purpose of benchmarking, we study the situation with
L = 0. A closed-form solution of the assembly quality loss with the
Box–Jenkins approach without bounds is derived. Consider the needle
dimensionDn

t in (5), and apply its EWMA forecastzt in (7) to adjust
the body dimensionDb

t in (6), we then have the assembly clearance

et =D
b

t + zt �Dn

t

= "t(1� #B)=(1� 'B)

+ �t�(1� �B)=f(1�B + �B)(1� �B)g

� �t(1� �B)=(1� �B) (9)

whereB is the usual backward shift operator, i.e.,B"t = "t�1. Here,
et can also be presented as

et �

1

k=0

 k"t�k+

1

k=0

�k�t�k�

1

k=0

�k�t�k = I+II�III: (10)

Note that the summation of itemsI andII is the body dimension after
EWMA adjustment, and itemIII presents the needle dimension. The
values of k; �k; �k obtained by equating (10) with (9) are

 0 =1;  k = 'k�1('� #) k > 0 (11)

�0 =0;

�k =
�

1� �� �
(1� �)k�1(1� �� �)

+�k�1(�� �) k > 0 (12)

and

�0 = 1; �k = �k�1(�� �) k > 0: (13)

Hence, the quality loss of the clearance is

QL = var(I + II) + var(III)� 2cov(I + II; III) (14)

where

var(I + II) =�2"

1

k=0

 2k + �2�

1

k=0

�2k + 2�"��

1

k=0

 k�k

=�2"(1� 2'#+ #2)=(1� '2)

+ �2�
�2

(1� �� �)2
(1� �� �)2=�(2� �)

+ (� � �)2=(1� �2)

+ 2(1� �� �)(�� �)=(1� �+ ��)

+ 2�"��
�

1� �� �
('� #)

� ((1� �� �)=(1� '+ �')

+ (� � �)=(1� �')) (15)

and

var(III) = �2�

1

k=0

�2k = �2� (1� 2�� + �2)=(1� �2): (16)



214 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 30, NO. 2, MARCH 2000

Note that thecov(I+II; III) value, i.e., the covariance between body
and needle cannot be calculated by

cov(I + II; III) = �"��

1

k=0

 k�k + �
2

�

1

k=0

�k�k (17)

as in practice the injector matching does not happen in the original
production sequence on a real-time basis, but by a sorted sequence on
a batch basis. To consider the correlation between body and needle after
sorting and matching, the theoretically bestQL we may have is to let
the body and needle be perfectly correlated. Thus, by applying

cov(I + II; III) = var(I + II) var(III) (18)

to (14), we obtain a lower bound for a real-time information sharing
situation

QLRT = var(I + II)� var(III)
2

(19)

wherevar(I + II)andvar(III) are given by (15) and (16).

IV. I NFORMATION QUANTIFICATION WITH EXAMPLES

In this section, we investigate the impact and quantify the value of
information sharing in terms of improvement in quality loss. We con-
sider the processes of needle dimensionDn

t and body dimensionDb
t

as

D
n
t =0:95Dn

t�1 + �t � 0:8�t�1

D
b
t =0:5Db

t�1 + "t � 0:4"t�1

where�t values have standard deviation�� = 1:2, and"t values have
standard deviation�" = 0:6, the parameters being based on the field
estimations cited in [8].�� and�" will depend on the current machine
setting.

By applying (4) and (19) to these processes, we obtain their
lower bound for a nonreal-time information sharing situation:
QLNR = 0:529, and the lower bound for a real-time information
sharing situation:QLRT = 0:106. The difference between these
two bounds indicates the possible quality improvement we may
make by real-time information sharing. Here, we simulate 30 days of
operation with component production of 10 000 units/day, and treat
daily production as a batch. The specification limits of both the needle
and body are scaled to be�5, with nominal values equal to zero. Four
types of processes are studied.

1) Process without information sharing: assume that the daily set-
ting of the needle machine varies between−1 and 1, since this is
good enough to be within the specification limits, while the daily
setting of the body machine is fixed at zero, since no information
from upstream is obtained. The simulation results in Table I show
that although the process capability of body manufacturingCb

pk

is as great as 2.75, the quality lossQL of matched assembly is as
high as 6.11, and itsV I is zero as defined. We will see to what
degree the quality loss can be improved by information sharing.

2) Process with one-way information sharing: the body manufac-
turer determines their daily setting according to the setting of
the needle machine. Table I indicates that the process capability
of body manufacturingCb

pk is less than process a) due to its de-
viation from the target, but its quality lossQL is much improved
with V I = 37:9%.

3) Process with two-way information sharing: by optimizing
expected matchings from both distributional information,

TABLE I
COMPARISON OF FOUR PROCESSES

WITHOUT/WITH INFORMATION SHARING

both needle and body machine settings are at zero. In this
case, process capacities of needle and body,Cn

pk and Cb
pk,

are both improved to acceptable values (> 1.0). Also, quality
loss is 0.53, which is quite close to the theoretical lower
bound:QLNR = 0:529, and the improvement is quantified by
V I = 74:5%.

4) Process with real-time information sharing: to implement
the modified Box–Jenkins adjustment approach, the EWMA
statistic is calculated from the real-timeDn

t data with� = 0:2

zt = 0:2Dn
t�1 + 0:8zt�1:

Note that a least squares estimate ofλ can be obtained using
the work of Montgomery and Mastrangelo (1991). Based on the
control rule withL = 0:8 (see [2] on how to determineL), we
adjust the body machine setting tozt as soon as

jzt � zrj � 0:8:

This approach is graphically presented in Fig. 2. Fig. 2(a) shows
the dimensional readings of needles, along with the EWMA sta-
tistics. In Fig. 2(b), the line based on the crosses shows the adjust-
ments applied to the body process, and the dashed lines are the
corresponding boundsL which indicate how the EWMA statis-
tics trigger the adjustment. The body processes without and with
adjustment are compared in Fig. 2(c). Fig. 2(d) compares the
assembly dimensions without and with adjustment. We can see
from Table I that the process capability of body manufacturing
Cb
pk has deteriorated to 1.68 due to the active adjustment, but it

is still within the acceptable range (>1.0). More importantly, the
quality loss of the matched assembly is reduced to 0.12, which
is fairly close to the theoretical bound:QLRT = 0:106. Its
V I = 94:0% indicates a dramatic improvement of this process.

V. CONCLUSION

In this research, we quantify and compare the impact of different
information-sharing strategies on process and product quality. We in-
dicate that real-time information sharing may lead to dramatic quality
improvement for an assembly process, an example being the two-stage
supply chain.

In reality, some practical issues need to be addressed. First, to mo-
tivate the information-sharing strategy, it is critical to suggest a mech-
anism that spreads the benefits of information sharing between the
supplier and manufacturer. Also, it is important to quantify the invest-
ment required to effect a real-time information sharing process before
proposing this strategy.

The proposed approach to evaluate the impact of information sharing
on quality can be directly extended to a more complex supply chain.
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Fig. 2. The Box–Jenkins bounded adjustment approach: (a) cross: needle dimension, circle: EWMA statistic; (b) cross: body adjustment, dash:L bounds, circle:
EWMA statistic; (c) cross: body dimension without adjustment, circle: with adjustment; and (d) cross: assembly dimension without adjustment, circle: with
adjustment.

What information to use or share and how to use or share it for quality
improvement in a complex supply chain still warrant further research.
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Robot Action Planning via Explanation-Based Learning

Huaglory Tianfield

Abstract—Domain-specific searching heuristics is greatly influential
upon the searching efficiency of robot action planning (RAP), but its com-
puter-realized recognition and acquisition, i.e., learning, is difficult. This
paper makes an exploration into this challenge. First, a problem formula-
tion of RAP is made. Then, by applying explanation-based learning, which
is currently the only approach to acquiring domain-specific searching
heuristics, a new learning based method is developed for RAP, named
robot action planning via explanation-based learning (RAPEL). Finally,
an example study demonstrates the effectiveness of RAPEL.

Index Terms—Action sequence synthesis, autonomous robot, expla-
nation-based learning, robot action planning (RAP), robotics, searching
heuristics.

I. INTRODUCTION

Research of robot action planning (RAP) started in early 1970’s. As
the earliest work on RAP, STRIPS [1] not only opened the area, but
also established classics in the area, e.g., means-ends analysis searching
mechanism, and precondition-effect expression of actions. Reference
[3] presented a survey upon RAP.

A problem solving system can be modeled as a triangle pulled on
its three angles by searching mechanism, knowledge base and data
base, respectively. A problem solving is a process of utilizing knowl-
edge upon data under the guide of searching mechanism. Along such
a triangle, approaches to RAP can be classified into two streams, one
weights knowledge and another weights searching.

Realized by knowledge-based/expert-system approaches, knowl-
edge-weighted RAP [3], [4] can work fairly well within specific
domains, but not in varied domains. This poses the motivation to
computer-realized recognition and acquisition, i.e., learning, of
domain-specific knowledge. The earliest learning based method for
RAP was by [5]. Action sequences which were successful in the
past are parametrically generalized to form macro actions. Another
learning based method for RAP is by analogy learning [6]. Refer-
ence [7] proposed a supervised analogy learning, between rote and
generalization, for RAP.

As another stream, searching-weighted RAP, in principle, has two
types, i.e., by universal and by domain-specific searching mecha-
nisms. However, existing searching-weighted RAP is all by universal
searching mechanisms, and the type by domain-specific searching
mechanisms is still a blank, neither manual nor computer-realized.

Random approximation is a universal searching mechanism without
heuristics. References [8]–[10] proposed an off-line blind enumerating
searching for RAP. Reference [11] formulated this idea of RAP as
a Boltzmann machine. Means-ends analysis searching mechanism
is a primary universal searching heuristics. It is first to compute the
difference between the current and the desired world state and then to
find a related action to reduce the existing difference. In fact, this is an
on-line error compensation, as in feedback based control ([12] gave
a system-and-control perspective to RAP). Other exploited universal
searchingheuristicsaresuchashierarchical (i.e.,abstracting)expression
of actions and world states, and opportunistic mechanism of human
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