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ABSTRACT
The rapid development of information technology, togetherwith advances in sensory and data acqui-
sition techniques, has led to the increasing necessity of handling datasets from multiple domains. In
recent years, transfer learning has emerged as an effective framework for tackling related tasks in tar-
get domains by transferring previously-acquired knowledge from source domains. Statistical models
andmethodologies arewidely involved in transfer learning andplay a critical role,which, however, has
not been emphasized in most surveys of transfer learning. In this article, we conduct a comprehen-
sive literature review on statistical transfer learning, i.e., transfer learning techniques with a focus on
statistical models and statistical methodologies, demonstrating how statistics can be used in transfer
learning. In addition, we highlight opportunities for the use of statistical transfer learning to improve
statistical process control andquality control. Several potential future issues in statistical transfer learn-
ing are discussed.

Introduction

With the remarkable development of information
technology in recent years, data mining and machine
learning techniques have been widely and successfully
applied in various domains and data sources. However,
traditional machine learning approaches usually per-
formwell only for single tasks andwithin the same data
distribution (Pan and Yang 2010, Weiss, Khoshgoftaar
and Wang 2016). To this end, transfer learning pro-
vides an efficient framework for combining multiple
sources and allows the transfer of previously acquired
knowledge to tackle related tasks in new domains.
With the assistance of transfer learning, information
transferred from source domains could improve a
learner’s performance in the target domain (Weiss,
Khoshgoftaar and Wang 2016). For instance, learning
to play the electronic organ may help facilitate learning
the piano (Pan and Yang 2010). Similarly, babies first
learn to recognize human faces and then build on
this knowledge to recognize other objects (Zhang and
Yeung 2014). Transfer learning techniques have been
demonstrated to be truly beneficial in many real-world

CONTACT Fugee Tsung season@ust.hk Department of Industrial Engineering and Logistics Management, Hong Kong University of Science and
Technology, Clear Water Bay, Kowloon, Hong Kong.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/lqen.

applications such as warranty prediction (Tseng, Hsu,
and Lin 2016), surface shape prediction (Shao et al.
2017), WiFi localization (Pan et al. 2008), sentiment
classification (Blitzer et al. 2007), and collaborative
filter (Pan et al. 2010).

Recent decades have witnessed rapid development
in statistical models and methodologies with applica-
tions in a variety of fields. Many of these applications
increasingly require describing data in different struc-
tures via statistical models and methodologies. Many
statistical models have been actively studied in a
transfer learning framework to integrate multiple data
sources and transfer knowledge in specific data types.
For example, Jin et al. (2011) investigate a hierarchical
Bayesian model to cluster short text messages via
transfer learning from auxiliary long text data. Shao
et al. (2017) propose a multi-task learning approach
for Gaussian processes to predict surface shapes by
integrating similar manufacturing processes. In addi-
tion to statistical models, statistical methodologies are
widely involved and play a critical role in connecting
each individual statistical model in transfer learning
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studies. Although transfer learning techniques have
been extensively summarized in the field of data min-
ing and machine learning (see Pan and Yang, 2010;
Lu et al., 2015; Weiss, Khoshgoftaar and Wang 2016),
there currently appears to be a lack of review articles
on transfer learning from a statistical perspective.

This study provides a comprehensive review of sta-
tistical transfer learning, which refers to the transfer
learning literature with a focus on statistical models
and methodologies adopted. Apart from reviewing lit-
erature, we investigate how statistical transfer learning
can be utilized in the field of statistical process control
(SPC) and quality control via several real-world appli-
cations: landslide monitoring using slope sensor sys-
tems, passenger inflow forecasting and monitoring in
urban rail transit systems, and shape deformationmod-
eling for 3D printed products.

The rest of the article is organized as follows. In the
next section, we provide a brief overview and catego-
rization of transfer learning methods. Then statistical
models andmethodologies contained in transfer learn-
ing papers are discussed and summarized. After thatwe
introduce three applications in SPC and quality control
based on statistical transfer learning. The conclusion is
presented at the last section.

A brief overview of transfer learning

There has been a great deal of research in recent years
on transfer learning techniques and applications and
several survey papers of transfer learning have been
published on data mining and machine learning. For
example, Pan and Yang (2010) introduce a brief history
and the categorization of transfer learning techniques
and present a comprehensive overview of transfer
learning for classification, regression and clustering
problems; Taylor and Stone (2009) survey transfer
learning for reinforcement learning; Lu et al. (2015)
examine transfer learning approaches in the compu-
tational intelligence field and cluster them into several
categories.

Before we proceed with the detailed review and cat-
egorization of transfer learning, it is necessary to clarify
the relationship between the closely related concepts of
transfer learning, multi-task learning, and self-taught
learning. Transfer learning is adopted to extract knowl-
edge from source domains to improve performance in
target domains, while in multi-task learning, the roles
of the source and target tasks are symmetric: learning

the task in each domain can be improved by using
shared knowledge gained through other tasks. Multi-
task learning approaches are covered in this paper as
they are sometimes viewed as a subarea of transfer
learning (Xu and Yang 2011) and widely termed as
transfer learning techniques (Huang et al. 2012, Zou
et al. 2015). Lastly, self-taught learning is transfer
learning with an emphasis on utilizing unlabeled data
in source domains for predictions in target domains.

Generally speaking, approaches to transfer learn-
ing can be divided into three categories based on
the form of transferring information from source to
target: instance-based, feature-based, and parameter-
based transfer learning. A brief review of each transfer
learning approach will be given in the following.

Instance-based transfer learning is used when the
source and the target instances are generated from two
different but closely related distributions so that parts
of the source data can be reused in the target task.
Dai et al. (2007) present a boosting algorithm, TrAd-
aBoost, to select the most useful source instances as
additional training data for the target task by iteratively
reweighting. Their procedure enables the construction
of a high-quality model for the target task by integrat-
ing only a tiny amount of new data and a large amount
of old data. Jiang and Zhai (2007) propose a general
instance weighting framework to remove misleading
training instances from source data and assign addi-
tional weight to instances in target data than those in
source data. Liao et al. (2005) adopt an active learn-
ing strategy to improve task performance by intro-
ducing auxiliary variables for each instance in source
data. Wu and Dietterich (2004) implement knowledge
transfer by minimizing a weighted sum of two separate
loss functions corresponding to source and task data,
respectively.

The feature-based transfer approach attempts to
learn a common feature structure between source
and target data, which can be treated as a bridge
for knowledge transfer. Argyriou et al. (2007) pro-
pose a regularization-based method to learn a low-
dimensional function representation shared by source
and target tasks. Lee et al. (2007) adopt a probabilis-
tic approach to learn an informed meta-prior over
feature relevance. Their model transfers meta-priors
between source and target tasks and can thus deal
with cases where tasks have non-overlapping features
or the relevance of the features varies between tasks.
Blitzer et al. (2006) suggest structural correspondence
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QUALITY ENGINEERING 117

learning (SCL) to identify correspondences between
features from source and target domains by modeling
their correlations with pivot features. Although it is
shown experimentally that SCL can reduce the dif-
ference between domains, selecting the pivot features
remains challenging. Pan et al. (2008) utilize maxi-
mum mean discrepancy embedding (MMDE) to find
a low-dimensional latent feature space in which the
distributions of data in different domains are close to
each other. Dai et al. (2008) exploit large amounts of
auxiliary data to uncover an improved feature repre-
sentation to enhance the clustering performance of a
small amount of target data.

Parameter-based transfer learning assumes that
source and target tasks should share parameters
or hyper-parameters of prior distributions. Most
research has been focused on two aspects: hierarchical
Bayesian (HB) frameworks and regularization-based
approaches. For the former, the parameters of models
for individual tasks are often assumed to be generated
from a common prior distribution. Thus, knowledge
can be transferred across domains by learning the
common information through the abundant auxil-
iary data from source domains. Gaussian processes
are widely used and appropriate for this situation
(Lawrence and Platt 2004, Schwaighofer et al. 2005,
Bonilla et al. 2007). Researchers have also imple-
mented parameter transfers with regularization-based
approaches. Evgeniou and Pontil (2004) separate
the parameter in support vector machines (SVMs)
for each task into a task-common term and a task-
specific term. They present an approach for knowledge
transfer based on the minimization of regularization
functionals.

Review of statistical transfer learning

As mentioned in the last section, existing surveys of
transfer learning have been mainly conducted in the
data mining and machine learning fields and focused
mostly onmethods of transferring information. Unlike
existing surveys, transfer learning literature is reviewed
from a statistical perspective in this article. Particu-
larly, transfer learning papers in the fields of statistics
and industrial engineering will gain additional atten-
tion. Recent progress is reviewed and organized from
two perspectives: statistical models and statistical
methodologies. First, transfer learning approaches
for many real-world applications are reviewed based

on their underlying statistical models for each single
task/domain, including linear models, Gaussian pro-
cess, network models, and statistical language models.
Various statistical techniques are then exploited to
transfer information across multiple statistical models
and data sources such as boosting-based methods,
bagging, Bayesian modeling, and regularization-based
approaches are summarized.

Statistical models

A variety of statistical models have been developed
in past decades to handle different data types in a
diverse range of real-world applications. In an applica-
tion aimed at transferring knowledge across multiple
tasks, the first issue is to select an appropriate statistical
model for each single task. As fundamental elements
for statistical transfer learning approaches, the underly-
ing statistical models need to be summarized with cor-
responding applications.

Many transfer learning studies have been conducted
based on linear and generalized linear models. For
example, to combine Earth System Model outputs for
land surface temperature prediction in both South and
North America, Gonçalves et al. (2016) adopt a sim-
ple linear model for each geographic location and sug-
gested a multi-task learning approach to allow them
to share dependencies. The transfer learning approach
is more effective than conducting an ordinary least
squares regression for each linear model since it can
capture dependences across locations. For general-
ized linear models, Zou et al. (2015) propose a trans-
fer learning method for a logistic regression with an
application in degenerate biological systems. Similarly,
Zhang et al. (2014) investigate a regularization-based
transfer learning approach to capture task relationships
for generalized linear models with the incorporation
of new tasks. Moreover, Samarov et al. (2015, 2016)
consider a linear mixture model to combine multi-
ple outputs, which are applied to handle hyperspectral
biomedical images.

Transfer learning has also been employed for
Gaussian processes. The key idea of such approaches
is to impose a shared prior to connect similar but not
identical Gaussian processes. The prediction for each
individual Gaussian process benefits from utilizing
observations from different but related processes.
Many Gaussian process methods based on transfer
learning are investigated under various assumptions
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118 F. TSUNG ET AL.

ranging from block to non-block design (Schwaighofer
et al. 2004, Bonilla et al. 2007, Yu et al. 2005) with prac-
tical applications in compiler performance predictions
and exam score predictions. Furthermore, Shao et al.
(2017) integrate cutting force variation modeling with
a multi-task learning approach to improve surface
prediction accuracy by incorporating engineering
insight, in which an iterative multitask Gaussian pro-
cess learning algorithm is proposed to learn the model
parameters.

For network models and graphical models, Huang
et al. (2012) propose a transfer learning approach for a
Gaussian graphical model. The goal of this method is
to learn the brain connectivity network for Alzheimer’s
disease patients based on functional magnetic reso-
nance image (fMRI) data.

Finally, statistical language models (see Zhai et al.
2008 for more details) can also be extended by trans-
fer learning. Although task-specific statistical language
models such as Latent Dirichlet allocation (Blei et al.
2003) for long text or Twitter-LDA (Zhao et al. 2011)
for short text have different structures, the words and
corresponding language models naturally share lin-
guistic similarities. In this sense, to improve the per-
formance of Twitter clustering, Jin et al. (2011) suggest
an extended Twitter clustering scheme by transferring
the knowledge learned from long texts to short Twitter
texts.

Statistical methodologies

In transfer learning literature, assorted statistical
methodologies are recommended to connect and
transfer knowledge among multiple statistical models
and data sources. Here most of the mainstream statis-
tical methodologies are reviewed to build connections
between statistical models in each domain.

Boosting-based weighing schemes are often used
to conduct instance-based transfer learning. Based
on the well-known adaptive boosting method (Fre-
und and Schapire 1995), Dai et al. (2007) present the
boosting algorithm TrAdaBoost, reducing the distri-
bution differences between domains by adjusting the
weights of instances. The traditional adaptive boosting
is an ensemble method that creates a strong classifier
from a number of basic classifiers like decision trees,
where the basic classifiers are combined sequentially,
by carefully adjusting the weights of training instances
in each iteration. To extend the adaptive boosting

method to conduct transfer learning on both source
domains and target domains, TrAdaBoost adopts
a different weighting mechanism which decreases
weights of the instances in source domains that are
dissimilar to target domains. By doing so, TrAdaBoost
consequently allows to enhance the predictive perfor-
mance in target domains by using the data in source
domains. Following this line, boosting-based methods
are considered under various scenarios, including
multimodal TrAdaBoost (Wei et al. 2016) and multi-
source TrAdaBoost (Yao and Doretto 2010). Bagging
(Breiman 1996) and bootstrap (Efron and Tibshirani
1994) are also extended as TrBagg (Kamishima et al.
2009) and double-bootstrapping source data selection
(Lin et al. 2013) to construct an ensemble of learners
in the context of instance transfer.

Bayesian modeling is one of the most common
statistical techniques for transferring information
across different tasks and models. Information on
parameters can be easily transferred between mod-
els through shared prior distributions and common
hyper-parameters. The use of Bayesian priors enables
the transfer of information on parameters from one
model to another. For instance, to predict products’
field return rate during the warranty period, Tseng
et al. (2016) propose a hierarchical Bayesian approach
to model laboratory and field data collected from mul-
tiple products with a similar design. The information
sharing between products is efficiently performed
using a Dirichlet prior distribution, which leads to
improved predictive performance especially for the
products with few or even no failures in laboratory.
Hierarchical Bayesian based transfer learning methods
are widely investigated under different settings and in
various applications. For linear models, Zhang et al.
(2010) formulate lq regularization-based multi-task
feature selection in a Bayesian framework, which
devises expectation-maximization (EM) algorithms
to learn model parameters for every task. To link
the model coefficients of old and new domains in
degenerate biological systems, Zou et al. (2016) adopt
a hierarchical structure to characterize the degeneracy
and correlation structure of the domains. Moreover,
Bouveyron et al. (2014) suggest a Bayesian approach
for a mixture of linear regression models in which
Dirichlet distribution and inverse-gamma distribu-
tion are imposed as priors. For Gaussian processes,
the hierarchical Bayesian framework is considered
to connect multiple related processes (Yu et al. 2005,
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QUALITY ENGINEERING 119

Bonilla et al. 2007) and can thus benefit from joint
estimation and knowledge transfer. In addition, it is
appropriate to adopt Bayesian prior to transfer infor-
mation between different statistical language models
and tasks (Jin et al. 2011), since many language mod-
els, such as Latent Dirichlet Allocation (Blei et al.
2003), are themselves probabilistic generative mod-
els constructed in a Bayesian manner. Apart from
parameter transfer, Bayesian probabilistic models
are also exploited for transfer learning in terms of
instance weighting in natural language process (NLP)
applications (Jiang and Zhai 2007).

Additionally, regularization-based methods provide
an effective framework of transfer learning by assum-
ing similar patterns for the model parameters between
sources, which are commonly exploited to build con-
nections between linear models through numerous
penalties. Specifically, suppose that there are K tasks
in total contained in target and source domains.
A regularization-based method typically considers the
following penalized estimation:

min
Bk

∑
k

gk (Xk, Y k, Bk) + penalty (B) ,

where gk is an application-specified loss function with
coefficients Bk, the k-th row of B, and (Xk, Y k) are
training data of k-th task. A penalty term is chosen
so as to make information on coefficients transferred
across all tasks and domains. Many penalties are inves-
tigated for different applications under this framework.
For instance, Liu, Ji and Ye (2009) adopt L21-norm reg-
ularization for linear models to conduct feature selec-
tion across multiple domains by encouraging multiple
predictors to share similar sparsity patterns, where the
penalty is taken as the sum of l2-norm over each vari-
able, i.e., penalty(B) = ∑

i

√∑
k B2

ki. Similarly, Liu,
Palatucci and Zhang (2009) propose the multi-task
Lasso to select significant variables across related linear
regression models by replacing l1-norm regularization
with the sum of l∞ regularization, i.e., penalty(B) =∑

imaxk |Bki|. Following this line, many variants con-
sidering other penalties are investigated. For example,
an adjusted l1-norm regularization weighted by spa-
tial information is given by Samarov et al. (2015) and
a mixture of l∞/l1/ridge-based penalty is discussed
in Samarov et al. (2016), where l1 based penalty is∑

i
∑

k |Bki| and ridge-based penalty is
∑

i
∑

k B
2
ki .

Gonçalves et al. (2014) design a regularization-based

approach induced by a Gaussian prior that charac-
terizes a sparse dependency structure of tasks and
extended linear and logistic regressions under this
framework and then provide a flexible Gaussian cop-
ula model that relaxes the Gaussian marginal assump-
tion (Gonçalves et al., 2016). Kernel extensions are con-
sidered in nonlinear models in the context of transfer
learning. Zhang et al. (2014) investigate a regulariza-
tion approach by imposing a matrix-variate Gaussian
prior distribution and extend it using kernel methods.
Nonlinear multi-task kernels for SVMs have also been
studied (Evgeniou and Pontil 2004).

For unsupervised approaches, Song et al. (2015)
investigate a PCA-based transfer learning approach
and apply it on speech emotion recognition. As a pop-
ular PCA-like algorithm in data mining field, sparse
coding-based transfer learning has also been exten-
sively studied (Raina et al. 2007,Wei et al. 2016,Maurer
et al. 2013). The key idea of sparse coding is to represent
data vectors as sparse linear combinations of basic ele-
ments to allow homogenous representation structures
to be shared between tasks.

For better illustration of the connection among sta-
tistical models, methodologies and transfer learning,
we’ve summarized the relationship between transfer
learning categories and statistical methodologies in
Table 1. In Table 2, we list transfer learning literature
that adopts various statistical models and methodolo-
gies.

Statistical models and methodologies are both crit-
ical in transfer learning and have been widely investi-
gated. However, there remains a limited variety of sta-
tistical models extended using transfer learning despite
their broad applications. As such, statistical transfer
learning extensions for SPC and quality control are
demonstrated in the following three sections. Firstly,
autoregressive models are extended to a transfer learn-
ing version to describe non-contemporaneous relation-
ships between sensors and for the rapid detection of
landslides and slope failures (Zhang et al. 2017). Then,
the prediction and monitoring of passenger inflows

Table . Relationship between transfer learning categories and
statistical methodologies

Bagging/ Bayesian
Boosting bootstrap Regularization framework

Instance-transfer � � �
Feature-transfer �
Parameter-transfer � �
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120 F. TSUNG ET AL.

Table . Relationship between statistical models and statistical methodologies in transfer learning.

Linear models and Graphical/ Hierarchical
generalized linear models Gaussian processes network models Bayesian models

Boosting, bagging and bootstrap Dai et al. ();
Wei et al. ();
Yao and Doretto, ();…

Regularization-based methods Zhang and Tsung, ();
Liu et al. ();
Samarov et al. ();
Gonçalves et al. ();…

Bayesian frameworks Zhang et al. (); Shao et al. (); Huang et al. () Song et al. (working paper);
Zou et al (); Yu et al. (); Bonilla et al. ();…

Jin et al. ();…
Bouveyron et al. ();…

in a rail transit system will be considered in a statisti-
cal transfer learning framework (Song et al. working
paper). After that, we introduce a parameter-based
transfer learning approach for shape deviation predic-
tion and to control 3D-printed products with distinct
shapes based on geometric error decomposition and
modeling by incorporating engineering knowledge
and experimental design (Cheng et al. 2017).

Statistical transfer learning for landslide
monitoring

Landslides are common geographical activities that
result in large quantities of rock, earth and debris flow-
ing down hillslopes, leading to thousands of casualties
and billions of dollars in infrastructure damage every
year around the world (Yang et al. 2010). To detect
and predict such abnormal geographical behavior,
accelerometer-based sensor systems are widely used
in landslide-prone sites. Autocorrelated time series are
often used to describe sensor readings over time and
autoregressive (AR) models are used for prediction
(Pu et al. 2015). SPC procedures for monitoring such
autocorrelated processes have also been widely studied
(Psarakis and Papaleonida 2007, Castagliola and Tsung
2005).

Multiple time series are collected from several
landslide-prone sites with multiple sensors assigned.
The relationship between such time series can be
mainly divided into two categories. The first is con-
temporaneous relationships, which contain spatially
correlated residuals and time-lagged effects. Existing
models such as vector autoregressive (VAR) models
(Lütkepohl 2005) and spatial-temporalmodels (Cressie
and Wikle 2015) are capable of capturing the contem-
poraneous relationship between multiple time series.
The second is non-contemporaneous relationships,

which means the autoregressive structure of sensors in
different sites may share similarities. The similarities
may result from the same type of sensors adopted and
similar geographical activities on site.

In this landslide application, sensor readings are
usually recorded during different periods, varying
from site to site. Thus existing statistical models
such as AR and VAR can only be used separately
for sensors in each landslide-prone site and may
fail to provide accurate modeling for sensors at a
site in the early stages with fewer observations. To
improve modeling accuracy, it is helpful to jointly
model the time series from different sites by con-
sidering the non-contemporaneous relationships,
which cannot be conducted using the above existing
methods. To this end, a transfer learning approach is
proposed to extend autoregressive models for slope
failure monitoring, where both contemporaneous
and non-contemporaneous relationships of multiple
autocorrelated time series are considered. Intuitively,
it is expected that information will be transferred from
“experienced” sites to early-stage sites by discovering
non-contemporaneous dependency structure in AR
coefficients. The detailed statistical model is as follows.

Suppose that data are collected from K different
landslide-prone sites. For the k-th site, pk sensors are
assigned to collect measurements simultaneously. Sen-
sor readings over time are denoted as time series
{y[k]i,t }Tkt=1 for the i-th sensor. Consider an AR(L) model
for i-th sensor at the k-th site:

y[k]i,t =
∑
l

β
[k]
i,l y

[k]
i,t−l + ε

[k]
i,t . [1]

Here,β[k]
i,l refers to the autoregressive coefficient rep-

resenting the relationship between the i-th sensor’s cur-
rent measurements and its lag l measurements at site
k. We assume that ε

[k]
t = (ε

[k]
1,t , ..., ε

[k]
pk,t )

′ is a pk × 1
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QUALITY ENGINEERING 121

vector of error terms, following N (0,�[k]), where the
covariance matrix �[k] is adopted to characterize the
contemporaneous spatial correlation between sensors
within site k. On the other hand, similarly to Gonçalves
et al. (2016), a Gaussian prior is imposed over the time-
lagged coefficients across the AR(L) models of sensors
to transfer information across sites and sensors. Specif-
ically, assume that

βl =
(
β
[1]
1,l , ..., β

[1]
p1l, ..., β

[K]
1,l , ...β

[K]
pKl

)
∼ N

(
0, �Me−θ l

)
[2]

independently for each l. Here, �M denotes a hidden
dependency structure among the autoregressive mod-
els on all sites. Moreover, the decreasing time-lagged
effect is accounted for using the exponential function
e−θ l , which depends on the lag term l and parameter θ .

The joint likelihood over all sites can be derived
to infer the above model parameters from historical
data. For site k, let AR coefficients B[k] ={β[k]

i,l for
i = 1, . . . p; l = 1, . . . L}. The log-likelihood condi-
tional on B[k] and�[k] is written as gk(�[k], B[k];Y [k]).
Considering the imposed prior distribution [2] that
characterizes the non-contemporaneous dependency
structure, in a Bayesian perspective, if we assume
non-informative priors for (�, �M, θ ), the poste-
rior log-likelihood for the entire transfer learning
framework is∑

k

gk(�[k], B[k];Y [k])

+
∑
l

log(π(βl |�M, θ ))+ const, [3]

where π(·) denotes the prior distribution of βl in
Eq. [2]. To get estimation, we can iteratively update
the parameters by maximizing the posterior above.
Specifically, with �M and θ fixed, {B[k],�[k]}Kk=1 can
be obtained by maximizing [3] through a coordinate
ascent algorithm; with {B[k],�[k]}Kk=1fixed, we can esti-
mate �M and θ . The latter term in [3] can be viewed
as a regularization term that links parameters in all
models together.

A Monte Carlo simulation is performed to show
the performance of the transfer-learning extended
method in Phase I estimation of autoregressive pro-
cesses. Assume that there are only two sites in total
with three sensors at each site. The lengths of observed
time series are different: sensors in the first site have
only 50 observations while those in the second have
500 observations. Here the first sensor can be regarded
as an early-stage site with fewer observations, while the

second is an “experienced” site with enough historical
data. Let the maximum lag be 4. Suppose that the true
coefficients of AR(4)models are generated froma 6 × 6
matrix �M , where

�M =

⎡
⎢⎢⎣

1 ρ ... ρ ρ

ρ 1 ... ρ ρ

... ... ... ...

ρ ρ ... ρ 1

⎤
⎥⎥⎦

6×6

.

A larger ρ in �M means the time series of sensors
in the simulation tend to evolve in a more similar
manner. When ρ= 1, the true AR coefficients in all
of the sensors are the same. Here, the non-transfer
baseline method is taken as separately estimating an
AR model within each site. In this simulation, 10,000
replicates are conducted for each ρ ranging from 0–
0.99. The transfer learning method and non-transfer
method are compared via their averaged root mean
square errors (RMSEs) at the first site. The result in
Zhang et al. (working paper) show that AR models
extended by transfer learning significantly outper-
form the non-transfer baseline approach and their
estimation performance is improved with ρ increas-
ing, which illustrates the necessity and effectiveness
of investigating non-contemporaneous relationships
and extending the AR model in a statistical transfer
learning framework. Further evaluation studies will
be conducted to compare predictive performance with
more baseline methods considered.

For the monitoring part, statistical transfer learn-
ing can provide all-round improvements to extend
the existing SPC schemes: more accurate Phase I esti-
mation and more rapid detection in Phase II online
monitoring.

For Phase I analysis, the simulation result has shown
the effectiveness of estimating in-control AR coeffi-
cients for sensors and landslides-prone sites, especially
for those with limited historical data. Outlier detection
and change-point diagnosis can also be investigated
in this transfer learning framework with reasonable
assumptions.

Adopting statistical transfer learning in Phase II
landslide monitoring is more challenging than for
Phase I analysis but worthwhile. An improved under-
standing of the target site/sensor can be obtained with
the help of source sites/sensors, thus leading to rapid
detection. For Phase II landslide monitoring, shifts
in the autoregressive structure B[k] and the spatial
covariance �[k] represent abnormal states and need to
be monitored. To monitor the autoregressive structure
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122 F. TSUNG ET AL.

of the k-th site B[k], a generalized likelihood ratio
(GLR)-based SPC scheme may be considered where
the transferred parameters {�M, θ} obtained in Phase
I can provide a more precise GLR statistic. For the
covariance matrix �[k], a residual-based control chart
may be considered in which the improved estimation
of B[k] using transfer learning can reduce the noise
when constructing statistics.

Statistical transfer learning for monitoring in
urban rail transit systems

With the proliferation of smart cities, public trans-
portation services such as urban railway transit (URT)
systems are playing an increasingly important role
in commuter mobility. For instance, Hong Kong’s
MTR carries more than five million passengers every
day. Aperiodic incidents and events, such as traffic
accidents, traffic controls, celebrations, protests and
disasters, can lead to abnormal passenger streams
on public transportation systems, which can result
in serious accidents such as stampedes due to over-
crowding in extreme cases. It is important to predict
passenger flows and conduct monitoring schemes
to prevent accidents due to excessive passenger flow
within URT systems. A large body of transportation
engineering research has analyzed passenger flows to
estimate travel times (Jaiswal et al. 2010), to simulate
the distribution andmovement of passengers in an area
(Setti and Hutchinson 1994), and to predict passenger
selection behavior (Ren et al. 2012). However, there has
been a dearth of research on the influence of passenger
crowding on entire URT systems. It is therefore crucial
to develop a statistical methodology to understand,
predict, and monitor the number of passengers and
the degree of crowding in a URT system in real time.

However, there remain several challenges to be
addressed. Most notably, the early warning problem
aims to make proactive decisions based on predicted
future passenger flows, which are significantly different
from conventional statistical process control problems
monitoring current processes based on past data.
Hence the modeling and predictive performance of the
methodology are crucial. Furthermore, the large num-
ber of stations in realURT systems particularly requires
scalable early warning schemes. In this section, a scal-
able and predictive-based SPC scheme is sought. To
begin with, a single model will be built for each station,
allowing for high flexibility and satisfying predictive

ability. Moreover, due to the special properties of
count data, conventional methods such as functional
data analysis cannot be applied to inflow passenger
profiles. To tackle this, a hierarchical model is adopted
to describe inflow counting data in each station, where
xk(t ) represents the number of passengers entering
station k at time t . Particularly, xk(t ) is assumed to be
a Poisson random variable with intensity parameter
λk(t ). After this, the focus is on log λk(t ), which is
inspired by the log-linear model for categorical data
(Li et al. 2009). Specifically, the following state space
model is proposed for each station k, k = 1, 2, . . . ,N

logλk (t ) = α
(k)
0 +

∑
l

α
(k)
l logλk (t − l)+ εk (t ) ,

[4]
where εk(t )’s are independent across stations and
follow N(0, σ 2

k ).
When the above hierarchical model of URT systems

is extended in a transfer learning framework, several
advantages immediately appear and show promising
potential. A URT system typically covers an entire
city and connects various areas in a network struc-
ture. Hence, the autoregressive structure of Poisson
intensities of different stations can be highly related as
the stations are spatially close or of the same category,
such as downtown, business districts, and residen-
tial areas. Consequently, the parameters of log-linear
models in Eq. [4] for similar stations are expected to
be closely related to each other. Isolating each station
is not enough to fully utilize the useful information
from other related stations. Instead, it is beneficial to
learn multiple tasks (stations) simultaneously under a
transfer learning framework.

In more detail, coefficients across different stations
are assumed to share a common prior distribution, i.e.,

αl =
(
α
(1)
l , α

(2)
l , . . . , α

(N)
l

)T
∼ N (0, �) .

Here, � depicts the inherent relatedness structure
among stations. Accordingly, stations can be clustered
into different categories by treating � as a similarity
measure. In this sense, transferring knowledge across
stations is expected to improve estimation and thus
predictive performance as well as reveal the hidden
inherent structure among stations. A similar idea has
been raised in the diseasemapping problemby borrow-
ing information from neighboring regions (Blangiardo
and Cameletti 2015). The major difference in the URT
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QUALITY ENGINEERING 123

problem is that the knowledge can be shared among
stations from similar category of functional zones in
addition to stations which are spatially close.

To monitor the passenger inflow in URT, a SPC
scheme is required to estimate parameters in Phase I
and implement monitoring in Phase II. There are tech-
nical challenges in each phase to applying SPC pro-
cedures for passenger inflow monitoring applications:
during Phase I, a state space model is adopted for each
station to describe the latent Poisson intensity where
the parameters are estimated together across various
stations via a common prior distribution. The esti-
mation of the hierarchical model in transfer learning
can improve performance, especially for newly acti-
vated stations with less data, where inherent related-
ness structure � is exploited over the entire URT sys-
tem. EM algorithms or particle filtering are potential
implementations of Phase I parameter inference. Dur-
ing Phase II, a predictive-based monitoring approach
is recommended because proactive decisions must be
made to avoid accidents. Specifically, for each station,
based on a prediction with a given lead time, e.g.,
20 min, the personnel in a URT system can decide on a
course of action. If the predicted values exceed the pre-
specified limit, this signifies that upcoming passenger
inflow poses a considerable challenge to the operation
of the station. Hence, an early warning scheme should
be activated, and an alarmmay be signaled if necessary.
Here, the control limits are determined by each station’s
specific capacity and infrastructure characteristics in
collaboration with Phase I analysis. On the other hand,
if the predicted values differ considerably from the later
observed actual values, model calibration and online
updating are needed. Moreover, to solve the scalabil-
ity issue, the approach of Mei (2010) can be adopted to
combine transfer learning predictions in multiple sta-
tions to obtain SPC statistics for detection throughout
the URT network, where a local statistic is generated
for monitoring based on the predicted passenger flow
at each station, and all of these local statistics are then
integrated to make a final decision. Further work fol-
lowing this line needs to be conducted.

Statistical transfer learning for 3D printing
quality control

3D printing is one of the most promising manufac-
turing techniques since it enables the direct fabrica-
tion of products of complex shapes with few design

constraints. However, dimensional inaccuracy remains
one of the most concerned quality issues limiting the
technology’s application. Many shape deviation mod-
eling and compensation methods have been proposed
to improve the geometric accuracy of fabricated prod-
ucts, including those devised by Huang et al. (2014,
2015), Luan and Huang (2015), andWang et al. (2017),
among others. However, it has been shown that these
methods only perform well for products with specific
shapes and usually require re-estimatingmodel param-
eters for new shapes. There are three major challenges
to predicting geometric errors and deriving effective
compensation plans for new products before fabrica-
tion. First, the geometric error-generating mechanism
is very complex and there are multiple error sources,
whichmake it difficult to build an effective model from
the first principle. Second, as there are a wide variety of
complex shapes, it is only feasible to fabricate limited
products for limited shapes due to resource constraints;
it is therefore unfeasible to build a single comprehen-
sive model based on data-driven methods that require
large amounts of data. Third, it is hard to establish con-
nections between the shape deviation of products fab-
ricated with distinct shapes.

To tackle the above challenges in quality control,
Cheng et al. (2017) propose an in-plane shape deviation
modeling scheme from a statistical transfer learning
perspective. In this scheme, a parameter-based trans-
fer learning approach is adopted based on geometric
error decomposition and modeling by incorporating
engineering knowledge and experimental design.

Although the error-generating mechanism is com-
plex, the geometric error of a fabricated product can
be generally decomposed into two components: (i) a
shape-independent error component, whichmeans the
model parameters for this component are the same for
different shapes, and (ii) a shape-specific error compo-
nent, corresponding to a specific term for the devia-
tion model of each different shape. The motivation of
the above decomposition is based on the observation
that the deviations of the same point located on the
boundaries of two different in-plane shapes are usu-
ally different. One cause of the difference in the fused
deposition modeling (FDM) process is that the error
induced by depositing material is highly related to the
moving path of the extruder. The error at a boundary
point is thus expected to have two components: one is
generally shared by all shapes and the other is highly
related to the shape features. Suppose the input shape
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124 F. TSUNG ET AL.

of a designed product is ψ0 and the final shape of the
fabricated product is ψ , then

ψ = ψ0 + e0 (ψ0)+ e1 (ψ0)+ ε,

where e0(ψ0) is the shape-independent deviation,
e1(ψ0) is the shape-specific deviation, and ε represents
the random error.

Since the measured deviation always contains both
error components, it is difficult to isolate the shape-
independent error from the shape-specific error with
simple data-drivenmethods. To tackle this, Cheng et al.
(2017) propose approximating the shape-independent
error with the deviation of a point inside a product
since the shape-specific error is majorly incurred by
shape boundary features. Based on this assumption,
an experiment was designed to investigate and model
the shape-independent error e0(ψ0). First, a circular
plate with a radius of 60 mm and a square plate with
a side length of 100 mm were fabricated via an FDM
3D printer, as shown in Figure 1. On each plate, 81
marks are designed and fabricated in an 9 × 9 grid pat-
tern. The interval of the grid is 10 mm. Each mark is
designed as a circular hole with a radius of 1 mm and
its center represents the mark’s position. Such a mark
is small enough to rarely affect the material shrink-
age, and its circular shape can facilitate the measure-
ment process for obtaining its position. Since these
marks are inside the product, the measured deviations
at these locations are rarely related to the shape fea-
tures and can hence be used to approximate the shape-
independent errors and model e0(ψ0) in the Cartesian
coordinate system. Suppose the designed marks are
fabricated at (xi, yi) and their measured locations are
denoted as (x′

i, y′
i), i = 1, . . .M. The measurement of

the shape-independent error at (xi, yi) can then be rep-
resented as (e0x(xi, yi), e0y(xi, yi)) = (x′

i − xi, y′
i − yi).

Based on the significant linear pattern observed in

Figure . Fabricated circular plate and square plate for modeling
shape-independent error. Adapted from Cheng et al. ().

the measurements of shape-independent error, the fol-
lowing linear regression models are applied to model
the shape-independent error in the x-direction and
y-direction separately:{

e0x
(
x, y

) = β1xx + β2xy + ex
e0y

(
x, y

) = β1yx + β2yy + ey
.

The linear coefficients in the above model can be
estimated using the data from our measurements. The
result shows that this model can accurately predict
the shape-independent error. After this step, the above
shape-independent error model can be transferred to
predict the shape-independent error component for
any new shape. Suppose the input shape is ψ0. The
shape incorporating the predicted shape-independent
error can then be represented as

ψ ′ = {(
x + e0x

(
x, y

)
, y + e0y

(
x, y

)) | (x, y) ∈ ψ0
}
.

To investigate the shape-specific error, the input
shape ψ0, the shape incorporating the shape-
independent error ψ ′ and the final product shape
ψ are represented as r0(θ ), r′(θ ), and r(θ ) in
the polar coordinate system, respectively. y(θ ) =
r(θ )− r0(θ ) denotes the measured deviation profile;
f0(θ ) = r′(θ )− r0(θ ) denotes the predicted shape-
independent deviation profile. The shape-specific error
is then isolated from the shape-independent error by

y (θ )− f0 (θ ) = r (θ )− r′ (θ ) = f1 (θ )+ ε (θ ) ,

where f1(θ ) denotes the shape-specific error and
ε(θ ) is the random error. To demonstrate this, two
circular products with radii of 10 mm and 30 mm
and two square products with side lengths of 20 mm
and 60 mm are fabricated and the corresponding
deviation profiles are measured. For each product, the
shape-independent deviation profile is predicted and
the shape-specific deviation profile is calculated. It is
observed that the shape-independent deviation model
can capture a major part of the total deviation, and
the remaining shape-specific deviation profile has a
shape-specific pattern around the 0 line and appears
to be rarely affected by the size of a product. This
preliminary result shows that the proposed parameter-
based transfer learning approach greatly improves the
extendibility of the shape deviation model to infer
new shapes. Future studies will focus on modeling
the relationship between the shape-specific deviation
profiles and the shape features, which may further
improve the model’s predictive performance and thus
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QUALITY ENGINEERING 125

increase the shape fidelity of fabricated products via
deviation compensation.

In addition to predicting shape deviation and con-
trolling for 3D printed products with distinct shapes,
there is also a great need for statistical transfer learning
for 3D printing quality control from source machines
to new target machines. When a 3D printing machine
changes, the shape deviation model must be revised,
which indicates the need to regenerate training data. It
is thus of great importance to transfer the knowledge
acquired from a source machine to a target machine.

Conclusion

The rapid development of information technology,
together with advances in sensory and data acquisi-
tion techniques, have made it possible to conduct sta-
tistical inferences based on multiple domains. To share
domain knowledge and combinemultiple data sources,
transfer learning techniques have been investigated and
utilized in many real-world applications. In this article,
besides a general review of transfer learning, a sum-
mary of transfer learning literature is provided based
on statistical models adopted in individual domains
and statistical techniques that are exploited to conduct
knowledge transfer. Furthermore, transfer learning
techniques are applied to SPC and quality control appli-
cations with various data types: autocorrelated sensor
readings for landslide detection, Poisson counting pro-
cesses for urban rail transitmonitoring, and shape devi-
ation prediction and control for 3D-printed products.

Several research issues in the context of statistical
transfer learning remain to be addressed. First, trans-
fer learning techniques have been mainly applied in a
limited variety of applications. As stated in the above
sections a great number of domain-specific statistical
models have the potential to be extended for transfer
learning in further applications. For example, as two
major dimensions in the information quality frame-
work (Kenett and Shmueli, 2016), integrating data
and generalizing findings are commonly required for
applications that integrate complex surveys (Kenett,
2016) and statistics data (Dalla and Kenett, 2015).
Developing application-specified transfer learning
methods should be of great value for practical use.
Second, incorporating engineering knowledge into a
statistical transfer learning work is also of great interest
to the fields of statistics and industrial engineering. For
example, in the 3D printing application the shape error

decomposition and modeling by incorporating engi-
neering knowledge makes it possible to transfer the
model to infer new shapes. A tailor-made statisti-
cal model for such applications can pave the way to
integrating engineering insight and transfer learning
approaches. Third, since the above extensions will
inevitably lead to more complex models, efforts at
both theoretical analysis and numerical studies are
increasingly desired for model inference and param-
eter estimations when conducting statistical transfer
learning approaches. For example, in the landslide
monitoring application, the transfer learning model
for time-lagged regressions can be inferred through
empirical Bayesian and maximum a posteriori (MAP).
However, it is also possible to undertake model infer-
ence in a full Bayesian manner through Markov chain
Monte Carlo methods (Gilks et al. 1995, Rubinstein
et al. 2016) or variational inference (Wainwright et al.
2008, Blei et al. 2016). Further statistical analysis is
required to make a choice in such transfer learning
applications. Specifically, asymptotic properties of the
estimators and convergence properties of algorithms
are needed to support the choices of statistical method-
ologies for transfer learning applications. Finally, for
SPC extensions, as mentioned earlier, there is substan-
tial room for improvement using statistical transfer
learning in both Phase I analysis and Phase II monitor-
ing. In Phase I analysis, it is challenging but worthwhile
to conduct statistical transfer learning for in-control
parameter estimation, outlier detection and change-
point diagnosis, for an improved understanding of
in-control situations. During Phase II monitoring, one
of the major problems is constructing statistics with
the assistance of statistical transfer learning for rapid
anomaly detection. Issues such as the online updating
of transferred parameters are worth considering.
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We would like to congratulate the authors on an inter-
esting and important review of industrial statistics
applications of transfer learning techniques. This is a
timely discussion because there is an urgent need for
dealing with datasets from multiple domains in vari-
ous industries (not only in manufacturing, but also in
service) and handling related tasks in target domains
by transferring previously acquired knowledge from
source domains. In this discussion, we will focus on
some recent developments in the field of statistics that
may essentially be categorized as transfer learning and
thus similar methodologies can be applied in related
applications.

Regularization-basedmodel estimation across
multiple classes

As authors surveyed in the third section indicate, an
effective and popular framework of transfer learning
is to apply regularization-based methods, by assuming
models from different sources share certain character-
istics. Some commonly used penalties were summa-
rized. Recently, the combination of fused lasso (Tibshi-
rani et al. 2005) and standard lasso penalties is shown to
be quite efficient for model estimation across multiple
classes (Danaher, Wang, and Witten 2014). For exam-
ple, consider the problemof estimatingmultiple related
Gaussian graphical models from a high-dimensional
dataset with observations belonging to distinct classes.
Graphical models are especially of interest in the anal-
ysis of modern social network data and can provide
a useful tool for visualizing the relationships between
individuals and for generating social hypotheses.
The standard formulation for estimating a Gaus-
sian graphical model assumes that each observation

CONTACT Changliang Zou nk.chlzou@gmail.com Institute of Statistic and LPMC, Nankai University, Nankai Qu , China.

is drawn from the same distribution (Friedman,Hastie,
and Tibshirani 2007). However, in many datasets the
observations may correspond to several distinct
classes (sources or domains), so the assumption that
all observations are drawn from the same distribution
is inappropriate. Estimating separate graphical models
for the distinct classes does not exploit the similar-
ity between the true graphical models. In addition,
estimating a single graphical model with the pooled
samples ignores the fact that we do not expect the
true graphical models to be identical, and that the
differences between the graphical models may be of
interest. Guo et al. (2011) proposed to take a penalized
log-likelihood approach and the penalty term is essen-
tially in the form of P(B) = λ

∑
i(
∑

k B
2
ki)

1/2, where
we slightly abuse notation here by using the same sym-
bols as the authors’ in the third section, but this should
not cause any confusion. Clearly, this is basically an
idea of statistical transfer learning and the penalty
function is similar to the penalties mentioned by the
authors.

Danaher et al. (2014) pointed that the approach
of using P(B) has some disadvantages. One is that it
uses just one tuning parameter and cannot control
separately the sparsity level and the extent of network
similarity. The other is that in cases where we expect
edge values as well as the network structure to be sim-
ilar between classes, the proposal of Guo et al. (2011)
may not be well suited because it encourages shared
patterns of sparsity but does not encourage similarity
in the signs and values of the non-zero edges. Danaher
et al. (2014) employ generalized fused lasso

P̃(B) = λ1
∑

i

∑

k

|Bki| + λ2
∑

i

∑

k<k′
|Bki − Bk′i|,
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where λ1 and λ2 are non-negative tuning parameters.
Like the lasso, the use of P̃(·) would result in sparse
estimates B1, . . . ,Bk when the tuning parameter λ1 is
large. In addition, many elements of B1, . . . ,Bk will be
identical across classes when the tuning parameter λ2

is large (Tibshirani et al. 2005). Thus, P̃(B) borrows
information aggressively across classes, encouraging
not only a similar network structure but also similar
edge values.

Similar treatments can also be applicable when the
underlying assumption that graphical models are not
changing over time is violated. There is growing evi-
dence that network structures are often non-stationary.
As a result there is a clear need to quantify dynamic
changes in network structure over time. Specially, there
is a need to estimate a network at each observation in
order to accurately quantify temporal diversity. Clearly,
estimating time-varying networks or graphical mod-
els could be again viewed as a statistical transfer learn-
ing problem because we need to borrow information
of data structure across time. To date, the most com-
monly used approach to achieve this goal involves
the use of sliding windows or kernel-based methods
(Esposito et al. 2003). However, as pointed by some
authors, such as Monti et al. (2014), while sliding win-
dows are a valuable tool for investigating high-level
dynamics of networks there are twomain issues associ-
ated with its use. First, the choice of the window length
can be a difficult parameter to tune. Second, the use of
sliding windows needs to be accompanied by an addi-
tional mechanism to determine if variations in edge
structure are significant. In light of this, Monti et al.
(2014) used a variant of P̃(B)

P̌(B) = λ1
∑

i

∑

k

|Bki| + λ2
∑

i

∑

k≥2

|Bki − Bk−1,i|,

which encourages the estimation procedure to produce
estimates with the two properties; sparsity and tempo-
ral homogeneity. With the help of P̌(B), we are able to
obtain individual estimates of graphical models at each
time point as opposed to a model for the entire time
series, allowing one to fully characterize the dynamic
evolution of networks over time.

Inference with transfer-learning techniques

Aforementioned studies focus mainly on model esti-
mation by connecting and transferring knowledge

among multiple statistical models and data sources.
We would like to briefly discuss some potential use
of transfer learning in statistical hypothesis testing.
Here, we take large-scale simultaneous hypothesis test-
ing problems as example, in which thousands or even
tens of thousands of cases are considered together.
This problem has become a familiar feature in scien-
tific fields such as biology, medicine, genetics, neu-
roscience, economics, and finance and has been well
studied, and many solutions have been proposed
(Storey and Tibshirani 2003). The most commonly
used approaches start with a list of N p-values pi,
one for each hypothesis Hi, and reject all hypothe-
ses with a p-value below a (possibly random, i.e.,
data-dependent) threshold q∗. The goal is to control
a measure of Type I error at level α. Traditionally,
this measure has been the Family-Wise Error Rate
(FWER), but for many applications this is too strin-
gent, and over the last 20 years the False Discovery
Rate (FDR) has become a popular choice, as it is more
permissive and adaptive (Benjamini and Hochberg
1995).

In many real-world applications, beyond p-values,
side information, represented by covariates Xi, is often
available for each hypothesis. This side-information
may be related to the different power of the tests, or
to different prior probabilities of the null hypothesis
being true. For example, previous studies may sug-
gest that some null hypotheses are more or less likely
to be false; similarly, in spatially structured problems,
non-null hypotheses are more likely to be clustered
than true null hypotheses. It is thus anticipated that
exploiting structural prior information will improve
the performance of conventional multiple testing pro-
cedures. Such covariates are often apparent to domain
scientists. While side information is likely to be irrel-
evant in the context of single hypothesis testing, with-
out taking into account this information in large-scale
simultaneous hypothesis testing problems would tend
to lack the detection ability of statistical significance.
The covariate-adjusted or side-information-exploited
FDR estimation and control is thus essentially a statis-
tical transfer learning problem. It has recently become
an active research topic and several attempts have been
made in the literature to incorporate side informa-
tion. For instance, methods that up-weight or down-
weight hypotheses appeared in Genovese, Roeder, and
Wasserman (2006) and Hu, Zhao, and Zhou (2010),
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among many others, say using

Qi = pi/ωi, i = 1, . . . ,N,

instead of pi’s themselves with the popular BH pro-
cedure (Benjamini and Hochberg 1995), where ωi’s
are some pre-chosen weights (related to Xi) satisfy-
ing

∑
ωi = 1. If the weights are chosen a priori, that

is, without looking at the p-values, then the weighted
BH procedure also controls the FDR. In particular,
most of the literature to date only considers the case
of deterministic weights. These results are very valu-
able, since weighted multiple testing procedures have
been shown to be robust to weight misspecification
(Genovese, Roeder, and Wasserman 2006): choosing
good weights can lead to huge increases in power, yet
bad weights will only slightly decrease power com-
pared to the unweighted procedure. In contrast, some
works allow the weights to depend also on the p-
values in a data-driven way, while still controlling the
FDR (Scott et al. 2013). Another different approach,
based on a two-stage approach mainly arising from
the microarray literature, extracts the prior informa-
tion to remove a subset of features which seems to
generate uninformative signals in the filtering stage,
followed by applying some multiple testing procedure
to the remaining features which have passed the fil-
ter in the selection stage; see, for example, Bourgon,
Gentleman, and Huber (2010), Sarkar, Chen, and Guo
(2013), and the references therein. The success of these
solutions is mainly due to the assistance of transfer
learning; information transferred from source domains
could improve the performance of statistical inference
in the target domain. In the literature of statistical sci-
ence, recent interests concentrate upon optimal selec-
tion of tuning parameters, such like the filtering thresh-
olds in the two-stage procedure, for example, see Du
and Zhang (2014).

In summary, given the fact that advances in
data acquisition techniques have led to the increas-
ing necessity of handling datasets from multiple
domains/classes, statistical modeling and inference
that are able tomake efficient use of previously acquired
knowledge from source domains or across classes, have
become critical in a variety of industrial applications.
The review of statistical models and methodologies in
this direction is very timely, and more research efforts
are needed for establishing certain statistical properties
in a systematic framework to ensure the right use of
transferred knowledge.
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I would like to start by congratulating the authors for
the nice presentation on the very interesting topic of
Statistical Transfer Learning (STL) and especially for
bringing to the fore its relation to the area of Sta-
tistical Process Control (SPC). In what follows some
further aspects of statistical transfer learning will be
presented while others will be discussed further, aim-
ing to provide a more spherical point of view of this
area.

Aspects of statistical transfer learning

Transfer learning attempts to carry over information
among tasks and improve the learning procedure. This
sharing of information across tasks (depending on the
problem under study) can be done either in parallel or
sequentially (see Figure 1).

Parallel STL: When various tasks need to be learned
simultaneously. These tasks might be different spa-
tial/temporal cases of the same task or tasks fromdifferent
domains. So, knowledge transfer is multi-directional, like
the landslide monitoring example.

Sequential STL: When we have one or more tasks that
we have learned and we are interested in transferring this
available knowledge in the learning of a new task. So, we
have unidirectional transfer, like the 3D printing quality
control example.

The former (also known as multi-task learning in
machine learning) has the advantage thatwe have a big-
ger set to work with but the learning is done simultane-
ously. On the other hand, the latter allows knowledge
attained from past (source) data to be carried over to
new (target) data analysis.

CONTACT Panagiotis Tsiamyrtzis pt@aueb.gr Department of Statistics, Athens University of Economics and Business,  Patission Street, Athens ,
Greece.

Negative transfer learning

In learning a new (target) task one can try to either do
it:

(i) from scratch, that is, use just the available data
and ignore any relative knowledge;

(ii) use transfer learning to carry over informa-
tion from source task(s) and attempt to have
improved performance in learning the target
task.

Is transfer learning always preferable? The answer
is no. The scenario where transfer learning can poten-
tially make things worst is known as negative transfer
learning (Torrey and Shavlik 2009), where attempting
to transfer knowledge from source to target task not
only does not improve performance but it may actually
decrease it. To avoid negative transfer the user needs
to be careful, that the tasks are similar enough and
that the transfer method is well leveraged. This is quite
demanding for an autonomous system and methods
that will be able to protect against negative transfer
(allowing only “safe” transfer) will most likely reduce
the benefit of transfer learning, compared to a method
that does “aggressive” transfer learning, which will
have excellent performance in similar tasks but will
allow negative transfer in dissimilar scenarios.

Statistical methods in transfer learning

Transfer learning is not really a new concept in the area
of statistics. The Bayesian approach, for example, can
be seen as a transfer learning mechanism. The idea of a
prior distribution along with the hierarchical modeling
naturally fits this purpose. As a representative example

©  Taylor & Francis
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Figure . Parallel (a) versus sequential (b) statistical transfer learn-
ing.

one can refer to the power priors (Ibrahim and Chen
2000) which play the role of (sequential) statistical
transfer learning mechanism: if D0 are the source task
data we form the prior:

π(θ |D0, α0) ∝ [L(θ |D0)]α0 π0(θ )

and then upon observing the target data D1 we obtain
the posterior:

π(θ |D0,D1,α0) ∝ [L(θ |D1) ][ L(θ |D0)]α0 π0(θ )

where the value of α 0 � [0, 1] will determine the effect
(reflecting the similarity between the source and the
target task) of the source data (D0) in determining the
posterior distribution of the parameter θ , once we use
the target data (D1).

Can the Bayesian approach allow negative transfer?
If the source and target tasks have been generated from
very different values of parameters, then the posterior
in the target task can be negatively affected from the
prior (that was set from the source task), mainly when
we have low volumes of data, as with big data the effect
of the prior diminishes. In any case, prior sensitivity
analysis can be helpful to examine whether the prior
used, affects (negatively) the posterior or not.

Transfer learning and SPC

The article demonstrates ways where SPC methods
can provide tools in statistical transfer learning. An
interesting question though comes if we inverse the
above and ask whether SPC methods can benefit from
the use of statistical transfer learning. For example, in
frequentist-based control charting (Shewhart charts,
CUSUM, EWMA, etc.) a standard practice is to employ
a Phase I/II split, where in Phase I we perform learning

(calibration) while in Phase II we perform testing. So,
learning stops at the end of Phase I. Transfer learning
philosophy would suggest to carry over learning in
Phase II, incorporating the information from new data
as they become available. Such a proposal is feasible
via a Bayesian SPC scheme (see, e.g., Tsiamyrtzis and
Hawkins 2005, 2010) which can be set as a sequentially
updated mechanism allowing the parameter transfer
learning, as data become available progressively, pro-
viding solutions even when we have small amounts
of data and braking free form the usual Phase I/II
constraint.
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Rejoinder

Fugee Tsung, Ke Zhang, Longwei Cheng, and Zhenli Song

Department of Industrial Engineering and Logistics Management, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

Wewould like to thank the discussants for their insight-
ful comments on a number of important areas in Sta-
tistical Transfer Learning (STL). Here we would like to
take this opportunity to summarize some of their key
ideas for further discussion and analysis.

Initially, Tsiamyrtzis pointed out that the STL tech-
niques can be categorized as parallel STL and sequen-
tial STL by the way they share information across tasks.
We agree with the summary that the parallel STL is also
known as multi-task learning and normally presents as
multi-directional while in sequential STL the learning
methods have specific unidirectional transfer. We have
also discussed the difference of multi-task learning and
typical transfer learning in our original article.

Both discussion articles mention the statistical
methods adopted in transfer learning. For Bayesian-
based methods in STL, Tsiamyrtzis indicates that the
idea of a prior distribution along with the hierarchical
Bayesian modeling naturally fit the purpose of transfer
learning to share information among parameters. We
present the same idea in our article and we expect
an integration of Bayesian methods and STL appli-
cations for SPC. For regularization-based methods,
we acknowledge Zi and Zou’s (2018) introduction on
some recent developments of regularization-based
methods in high-dimensional statistics that may be
further adopted in STL applications, like fused Lasso
(Tibshirani et al. 2005) for network structured
data.

Tsiamyrtzis raises an important issue of trans-
fer learning: negative transfer (Torrey and Shavlik
2009). In fact, inappropriate transfer across tasks may
have negative effects on the learning performance,
which have been widely discussed in machine learning

CONTACT Fugee Tsung season@ust.hk Department of Industrial Engineering and Logistics Management, Hong Kong University of Science and
Technology, Clear Water Bay, Hong Kong.

studies (Pan and Yang 2010). The negative effects nor-
mally originate the unconformity between the dataset
and the assumed model/pattern. For example, as Tsi-
amyrtzis specifies, in Bayesian-based transfer learn-
ing, the transfer is allowed by a prior distribution that
assumes similarity between source and target domains.
If the source and target tasks have been generated from
very different parameters, the posterior in the target
task may be negatively affected by the prior. Similarly,
in regularization-based transfer learning, if the tasks do
not present a common sparsity pattern as assumed, the
transfer learning performance might be compromised
or even worsen.

Discussants also mention the further applications of
STL in statistical inference and SPC. Zi and Zou (2018)
suggest the potential use of STL in hypothesis testing.
We agree with their comments and are glad to see the
potential improvement that STL could make for mul-
tiple testing problems. On the other hand, Tsiamyrtzis
notes that SPC methods may benefit from the use of
STL by incorporating information in Phase I and Phase
II, like in a Bayesianmanner.We appreciate this impor-
tant suggestion on future research. This idea seems in
a similar sense to online learning (Hoffman, Bach, and
Blei 2010).

In summary, STL provides an efficient framework
to extend and improve SPC methods by combining
previously acquired knowledge across classes/sources,
whichmeets the increasing necessity of fusing different
datasets in modern industrial and service applications.
We thank the discussants for their valuable comments,
andhope the discussion articlewill identify somedirec-
tions that warrant future research for SPC and quality
improvement.

©  Taylor & Francis
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